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Abstract

In this paper we make use of the graphical procedure previously described [Jin, D. et al. (1997)J. Am. Chem. Soc.,
119, 6923–6924] to analyze NMR relaxation data using the Lipari-Szabo model-free formalism. The graphical
approach is advantageous in that it allows the direct visualization of the experimental uncertainties in the motional
parameter space. Some general ‘rules’ describing the relationship between the precision of the relaxation measure-
ments and the precision of the model-free parameters and how this relationship changes with the overall tumbling
time (τm) are summarized. The effect of the precision in the relaxation measurements on the detection of internal
motions not close to the extreme narrowing limit is analyzed. We also show that multiple timescale internal motions
may be obscured by experimental uncertainty, and that the collection of relaxation data at very high field strength
can improve the ability to detect such deviations from the simple Lipari-Szabo model.

Introduction

NMR relaxation (T1, T2, NOE) experiments are a very
important tool for studying the internal dynamics of
proteins (Abragam, 1961; London, 1980). Dynami-
cal information can be extracted from the relaxation
data using various analytical models for the dynam-
ics whose parameters may be fit to the relaxation
data (Woessner, 1962; Wallach, 1967; Kinosita et al.,
1977; Wittebort and Szabo, 1978; Brainard and Szabo,
1981). Another approach involves the direct mapping
of the spectral density function from experimental
data (Peng and Wagner, 1992). The approach most
commonly used is based on the so-called ‘model-
free’ formalism (Levy et al., 1981; Lipari and Szabo,
1982; Clore et al., 1990b). The information contained
in the relaxation data is assumed to be completely
specified by two quantities: a generalized order para-
meter,S2, which is a measure of the spatial restriction
of the internal motion, and an effective internal corre-

∗To whom correspondence should be addressed.

lation time,τe, which is a measure of the rate of the
internal motion. This framework, developed by Lipari
and Szabo (Lipari and Szabo, 1982), has been applied
by many groups to interpret NMR relaxation experi-
ments on proteins (see for example Kay et al., 1989;
Clore et al., 1990a; Palmer III et al., 1991; Kördel et
al., 1992; Schneider et al., 1992; Stone et al., 1992;
Orekhov et al., 1994; Mandel et al., 1995; Li and
Montelione, 1995).

In most experimental studies to date, the model-
free parameters have been estimated by minimizing
the residual sum-of-square error function between
the calculated and experimental relaxation parame-
ters (Palmer III et al., 1991). Although this fitting
procedure is statistically legitimate, the effects of the
uncertainties in the measured relaxation rates on the
precision of the model-free parameters is far from
transparent.

In earlier work (Jin et al., 1997) we demonstrated
how the uncertainties in the relaxation rates may be
mapped onto the (S2, τe) plane, allowing the informa-
tion content of the experimental data to be visualized
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graphically. In this paper, we use this method to ob-
tain a better understanding of how these uncertainties
propagate, and how this propagation is influenced
by the correlation time for the overall macromolec-
ular tumbling (τm) and the dynamical regime of the
motion. We find that the precision in the estimated mo-
tional parameters decreases rapidly asτe approaches
the tumbling timeτm. Although the range of validity
of the Lipari-Szabo model-free formalism was clearly
delineated in the original papers (Lipari and Szabo,
1982), there is a widespread misconception that the
model-free approach is applicable only whenτe is
much faster thanτm. In fact, there is no sucha priori
limit on the range ofτe. We reexamine this problem
using numerical examples to illustrate the precision
that is required in order to extract useful information
about internal motions on time scales which are not in
the extreme narrowing limit. We note that the graph-
ical method has been applied previously in a more
limited way to extract protein order parameters and
effective correlation times from NMR experiments
(Henry et al., 1986; Weaver et al., 1988; Fushman
et al., 1994).

Background

NMR relaxation of nuclei in a macromolecule tum-
bling in solution is determined by the motions through
the time correlation function,C(t). Assuming that the
overall motion of the macromolecule is isotropic, and
that the overall and internal motions are uncoupled,
the total time correlation functionC(t) can be factored
into a product of correlation functions

C(t) = CO(t)CI (t). (1)

The correlation function for overall isotropic rota-
tional motionCO(t) is given by

CO(t) = 1

5
e−6Dmt = 1

5
e−t/τm, (2)

whereDm andτm are the rotational diffusion constant
and correlation time of the macromolecule, respec-
tively. For dipolar NMR relaxation the correlation
function for the internal motionsCI (t) is given by

CI (t) = 〈P2(µ̂(0)× µ̂(t))〉, (3)

where the unit vector̂µ points along the internu-
clear axis between the dipolar coupled nuclei in the
macromolecule-fixed frame andP2(x) is the second
Legendre polynomial

P2(x) = 1

2
(3x2− 1). (4)

It should be noted that the factorization of the total
time correlation function into a product of correla-
tion functions corresponding to overall tumbling and
internal motions does not depend on a separation of
time scale between these motions. For most native
proteins which are sufficiently well structured that
their rotational tumbling can be charaterized by a sin-
gle (time independent) diffusion tensor, we expect
that the factorization of Equation 1 is a very good
approximation.

The relaxation of protonated15N nuclei is me-
diated primarily by dipole-dipole interactions with
the attached protons and secondarily by chemical
shift anisotropy. If cross-correlation effects are sup-
pressed (Boyd et al., 1990), the longitudinal relaxation
rate (R1), transverse relaxation rate (R2), and the
nuclear Overhauser enhancement (NOE) are given by

R1 = d2

4
[J (ωH − ωN)+ 3J (ωN)

+6J (ωH + ωN)] + 1
2ω2

N

3
J (ωN) (5)

R2 = d2

8
[4J (0)+ J (ωH − ωN)+ 3J (ωN)

+6J (ωH)+ 6J (ωH + ωN)]
+1

2ω2
N

18
[4J (0)+ 3J (ωN)] (6)

NOE= 1+
γH [6J(ωH +ωN)− J(ωH − ωN)]

γN [J(ωH −ωN)+ {3+ 412ω2
N/(3d

2)}J(ωN)+ 6J(ωH +ωN)]
(7)

where the spectral density function,J (ω), is the
Fourier cosine transform of the total correlation func-
tion,

J (ω) = 2
∫ ∞

0
cos(ωt) C(t) dt, (8)

and γH and γN are the gyromagnetic ratios for the
proton and nitrogen respectively;ωH andωN are the
Larmor frequencies of1H and 15N, and the chem-
ical shift anisotropy (CSA) value1 = δ‖ − δ⊥
(the difference between the parallel and perpendicular
components of the chemical shift tensor). The constant
d is given by

d = γHγNh̄

r3
NH

µ0

4π
, (9)
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whereh̄ is Planck’s constant divided by 2π, rNH is the
amide15N-1H bond length, andµ0 is the permeability
of free space.

If we assume thatCI (t) decays to a plateau value
for t → ∞ and that the decay proceeds in a single-
exponential manner characterized by an effective cor-
relation timeτe, thenCI (t) can be written as

CI (t) = S2+ (1− S2)e−t/τe . (10)

As stated in the original paper (Lipari and Szabo,
1982), the plateau valueS2 is a model-independent
measure of the degree of spatial restriction of the inter-
nal motion, whose value can range from 0 (when the
vector samples all possible orientations) to 1 (when
the vector is completely restricted); the second para-
meter,τe, is related to the rate of the internal motion.
It is important to note that althoughS2 has a model-
independent significance,τe depends on the spatial
nature of the motion and can be related to micro-
scopic rate constants only within the framework of a
particular dynamic model.

Having obtained an expression for the total time
correlation function, one can readily compute the
spectral density function in the model-free formalism:

J (ω) = 2

5

[
S2τm

1+ (ωτm)2
+ (1− S2)τ

1+ (ωτ)2

]
(11)

where
1

τ
= 1

τe
+ 1

τm
. (12)

In the absence of internal motions (e.g., whenS2= 1),
the spectral density function is reduced to its isotropic
‘rigid body’ limit

J0(ω) = 2

5

[
τm

1+ (ωτm)2

]
(13)

which depends only on the overall tumbling timeτm
of the protein.

If τm is known, then the relaxation ratesRi (i =
1, 2, 3;R3 = NOE) can be directly calculated ifS2

andτe are given, whereas it is not possible to eval-
uateS2 or τe analytically when the relaxation rates
R1, R2, and NOE are known. The precision of the
relaxation data may be represented by an interval of
the formRi ± 1Ri , where1Ri is the uncertainty
in the i-th measurement. In other words, we assume
that due to experimental uncertainties, the relaxation
measurements are uniformly distributed in the inter-
val (Ri − 1Ri , Ri + 1Ri ). Our graphical procedure
involves the construction of contour lines of constant

Ri as a function ofS2 andτe. For a given relaxation
measurementRi ± 1Ri , the area in theS2-τe plane
between the contour lines corresponding toRi −1Ri
andRi + 1Ri contains all (S2, τe) points consistent
with that experimental measurement. The intersection
of these areas for all three relaxation values defines
the complete solution space for the model-free pa-
rameters, and contains all (S2, τe) points which are
consistent with all three NMR relaxation measure-
ments. Our graphical method can be viewed as a
simple example of ‘set-theoretic estimation’, a gen-
eral data analysis strategy that has been applied to a
wide variety of problems in the electrical engineering
literature (Combettes, 1993). Alternatively, our solu-
tion space can be interpreted as being proportional to
the Bayesian posterior probability densityP (S2, τe
|D) under a uniform prior and box-shaped likelihood
function (see Bretthorst (1990a) for an introduction to
Bayesian statistics in an NMR context). This treat-
ment is somewhat simplistic, in that each (S2, τe)
point inside the solution space has an equal proba-
bility. As an alternative, we can replace the uniform
error distributions with Gaussian (normal) probability
distributions. The results presented in this paper are
based on uniform error distributions. When Gaussian
error distributions are used instead, the conclusions
are qualitatively the same as obtained using a uniform
error distribution.

In the following section the graphical procedure
is used to analyze how experimental uncertainties in
the NMR relaxation measurements affect the precision
in the estimates of the Lipari-Szabo parameters which
describe the protein motions. The results depend upon
the assumed precision in the relaxation measurements.
The precision reported in publications varies widely;
the methods used to estimate the uncertainties vary
in statistical rigor, and many publications do not re-
port any estimate of the precision. The synthetic data
discussed in this paper assumes uncertainties in the
NMR relaxation data in the range of 2% – 5%. The
highest precision reported in the current literature for
these kinds of measurements is on the order of 1%.
Although not considered further here, we note that the
approximations upon which Equations 5–7 are based,
especially the two-spin approximation and that the
CSA1 is independent of conformation (Tjandra et al.,
1996a), need to be examined more carefully when
considering the theoretical limits of the precision that
it is presently possible to obtain in the relaxation mea-
surements and the meaning of this estimate in the
context of these approximations.
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Results and discussion

Generic features of the contour maps

In order to provide a general overview of the behavior
of the relaxation rates as a function ofS2 andτe, con-
tour maps ofR1, R2, and NOE were constructed for
a representative tumbling time (τm = 4 ns) and field
strength (ωH = 500 MHz), and are shown in Figure 1.
In each map, the increment between two adjacent con-
tour lines was kept constant. There are several features
common to all three maps that are worth noticing.
First, smaller relaxation rates and NOE values (in the
lower left corner of each map) generally correspond to
smaller values ofS2 andτe. Contour lines correspond-
ing to smallR1,R2, or NOE values cover a small range
of (S2, τe) values, while contour lines corresponding
to larger relaxation rates in general cover a broader
range. LargeS2 values and/or largeτe values can only
be found along these latter contour lines. This implies
that, for a given value ofτm, larger relaxation rates
usually correspond to internal motions that occur with
a smaller magnitude or on a longer time scale and is
consistent with the general observation that fast inter-
nal motions tend to decrease the relaxation rates (Levy
et al., 1981). Furthermore, as the relaxation rates in-
crease and approach their ‘rigid body’ values (denoted
by R0

1, R0
2, and NOE0), the spacing between contour

lines becomes less dense. This is particularly apparent
in theR1 and NOE contour maps (Figures 1a and 1c),
and implies that the relaxation rates are least sensi-
tive to changes inS2 andτe when they are close to
their corresponding ‘rigid body’ values. This graphical
analysis demonstrates that when measured relaxation
parameters are close toR0

1 and NOE0 it is necessary to
have much higher precision in the corresponding mea-
surements in order to sufficiently restrict the solution
space of motional parameters.

Behavior of the contour maps as a function of overall
tumbling time (τm)

In order to provide more insight into the impact of
changes inτm on the observed relaxation rates, con-
tour maps were constructed for several values of the
overall tumbling time (τm = 2, 4, 8, 16 ns) assuming
a field strength of 500 MHz (Figures 2-5). The be-
havior of the contour map of each type of relaxation
parameters (R1, R2, and NOE) is described below.

R1 Contour maps
Figure 2 shows contour diagrams forR1 relaxation for
macromolecular tumbling times of 2 ns, 4 ns, 8 ns,
and 16 ns. Forτm = 2 ns (Figure 2a), the relationship
betweenS2 andτe for a givenR1 value is nearly linear.
However, forτm = 4 ns (Figure 2b), the contour map
is qualitatively different. The special feature of this
map is related to the ‘rigid body’ value,R0

1. When
R1 is small (i.e.< 2.0 s−1), there is little difference
from the behavior at 2 ns. However, asR1 approaches
R0

1 (3.01 s−1 for τm = 4 ns), the contour lines be-
come nearly parallel to theS2 axis. When R1=R0

1, the
contour is in fact perpendicular to theτe axis. Futher-
more,R0

1 is no longer the maximal value ofR1, and
contour lines corresponding to R1 > R0

1 can be found
to the right side of this ‘rigid body’ contour. In this
region of the contour map, the effect of internal mo-
tions is to increaseR1 above the corresponding value
for the rigidly tumbling protein. This effect can be
seen most clearly in Figures 2c and 2d. The origin
of these features can be understood by examining the
conditions under which the Lipari-Szabo spectral den-
sity (Equation 11) reduces to the ‘rigid body’ limit
(Equation 13). They can be found simply by setting
Equations 11 and 13 equal to each other. We find that
J (ω)=J0(ω) only if

(S2− 1)(τ− τm)(1− ω2τmτ) = 0, (14)

from which we can see that the following are the
sufficient conditions:

1. S2 = 1

2. τe = ∞
3. τe = τm/(ω

2τ2
m − 1) (for ωτm > 1).

It follows, therefore, that ifτe = τm /(ω
2τ2
m − 1),

J (ω) is equal toJ0(ω), and is independent ofS2.
SinceR1 is dominated byJ (ωN), R1 will also be
independent ofS2 if the effective internal correlation
time of the internal motions equals the ‘criticalτe’.
The value of this ‘criticalτe’ is approximately 6.9 ns
for τm = 4 ns andωN = 50 MHz; which is some-
what different from the actual value of the ‘criticalτe’
(5.03 ns for the same values ofτm andωN) because
terms other thanJ (ωN) also contribute toR1. The
true ‘critical τe’ can be found by equating the full ex-
pressions forR1 andR0

1 obtained using Equation 5. It
is clear that the information content ofR1 concerning
the internal motional averaging,S2, is at a minimum
when the measuredR1 value approachesR0

1. There
is a simple explanation for why, given a sufficiently
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Figure 1. Contour maps ofS2 andτe for different types of15N NMR relaxation measurements: (a) longitudinalR1 contours, ranging from
0.03 s−1 to 3.03 s−1 with 0.1 s−1 step,R0

1 = 3.01 s−1, (b) transverseR2 contours, ranging from 0.2 s−1 to 6.6 s−1 with 0.2 s−1step,

R0
2 = 6.62 s−1, (c) heteronuclear NOE contours, ranging from−3.6 to 0.7 with 0.1 step, NOE0 = 0.718. For these contour maps the

spectrometer frequenciesωH andωN were chosen to be 500 MHz and 50.7 MHz respectively, and the overall correlation timeτm = 4 ns. To
illustrate the mapping procedure, a region is shaded in each map corresponding to the following sample NMR data:R1 = 2.88± 0.05 s−1, R2
= 5.90± 0.10 s−1, NOE= 0.55± 0.05.

long tumbling time such thatτm > 1/ω, there exists
a value ofτe for which R1 = R0

1. In Figure 3, the
‘rigid body’ longitudinal relaxation rateR0

1 is plotted
as a function of tumbling timeτm. The maximum re-

laxation rate RMAX1 occurs whenτm = 1/ω. For an
ωN of 50 MHz, RMAX

1 (3.13 s−1) occurs at a tumbling
time τMAX

m ≈ 3.0 ns. The macromolecular tumbling
changes from the faster motion limit to the slow mo-
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Figure 2. The longitudinal relaxationR1 contour maps at different values of overall correlation timeτm: (a) τm = 2 ns,R1 ranging from
0.0 s−1 to 2.9 s−1 with 0.1 s−1 step; (b)τm = 4 ns,R1 ranging from 0.03 s−1 to 3.03 s−1 with 0.1 s−1 step; (c)τm = 8 ns,R1 ranging from
0.0 s−1 to 3.1 s−1 with 0.1 s−1 step; (d)τm = 16 ns,R1 ranging from 0.0 s−1 to 3.1 s−1 with 0.1 s−1 step.

tion limit at τMAX
m . For any value of R01 < RMAX

1 ,
there are two tumbling times corresponding to this
relaxation rate; one longer thanτMAX

m and a second
one shorter thanτMAX

m . Thus, forωN at 50 MHz and
tumbling times greater than 3.0 ns, internal motions of
a certain frequency (τ′e) can combine with the overall

tumbling (τ′−1 = τ′−1
e + τ−1

m ) to produce the same
longitudinal relaxation rate as the overall tumbling
alone, R1(τ

′) = R0
1(τm). When this condition is ful-

filled, the longitudinal relaxation rate is independent
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Figure 3. The ‘rigid body’ longitudinal relaxation rateR0
1 as a func-

tion of the overall tumbling timeτm. The function is double-valued.
When an overall tumbling timeτm is longer than theτMAX

m , the
longitudinal relaxation rateR1 for internal motions on the time scale
of τ′e (where 1/τ′ = 1/τ′e+1/τm) is independent ofS2. A magnetic
field strength ofωH = 500 MHz is used here.

Table 1. Field strength dependence of RMAX
1

andτMAX
m

ωN (MHz) RMAX
1 (s−1) τMAX

m (ns)

50.7 3.13 3.0

60.8 2.81 2.5

76.0 2.54 2.0

101.3 2.38 1.5

of S2 because the two Lorentzians which appear in
Equation 11 are equal:

τm

1+ (ωτm)2
= τ

1+ (ωτ)2
. (15)

Therefore, any combination of coefficientsS2 and
(1− S2) leavesJ (ω) of Equation 11 unchanged. This
explains the transition which appears in the (S2, τe)
contour maps (Figure 2) whenτm > 3.0 ns. The field
strength dependence of RMAX

1 andτMAX
m is illustrated

in Table 1, whereτMAX
m can be well approximated by

1/ωN .
For τm = 8 ns, theR1 contour map (Figure 2c)

differs from the 4 ns contour map only in its quanti-
tative details: the ‘rigid body’ contour line is shifted
towards the left side of the map (R0

1 = 2.09 s−1), with
the criticalτe being only about 1.1 ns, and theR0

1 value
is significantly smaller than the maximumR1 value
(3.13 s−1). The contour map forτm = 16 ns (Fig-
ure 2d) continues this trend: the ‘rigid body’ contour
is further shifted to the left (R0

1 = 1.13 s−1), with the

Table 2. Values of R1/R
0
1 as a func-

tion of τm for different values of
τe/τm

a

τm (ns) τe/τm

0.02 0.2 1.0

2 0.81 0.89 0.94

4 0.83 0.91 0.99

8 0.87 1.04 1.09

16 1.01 1.34 1.16

aS2 is assumed to be equal to 0.8
and the magnetic field strengthωH
= 500 MHz.

critical τe being about 0.3 ns. The overall qualitative
patterns of the contour maps forR1 at ωN = 75 MHz
are very similar, except that the criticalτe becomes
smaller for eachτm.

R2 contour maps
Compared to theR1 contour maps, the qualitative pat-
terns ofR2 contour maps (Figure 4) do not change as
much as a function ofτm. This is due to the fact that
R2 is dominated by theJ (0) term, which increases
monotonically as a function ofτe. Furthermore, un-
like the situation forR1, J (0) ≤ J0(0) for all values
of τe, which indicates that the ‘rigid body’ transverse
relaxation rate,R0

2, is also the maximumR2 value.
In fact, theR2 contour maps are approximately un-
changed with respect toτm when theτe is plotted in
reduced units (i.e., as a function ofτe/τm), since

J (0) = 2

5

[
τmS2+ τ(1− S2)

]
(16)

and the ‘rigid body’J0(0) is simply equal toτm. If we
expressτe in units ofτmand assumeR2 is dominated
by theJ (0) term, then Equation 16 can be written in
reduced units:

J (0)/J0(0) = S2+ λ(1− S2) = R2/R
0
2, (17)

whereλ = m
1+m andm = τe/τm. From Equation 17 it

is apparent thatR2/R0
2 as a function ofτe/τm (i.e.,λ)

is independent ofτm.
Another feature ofR2 contour maps is that the

contours are nearly linear. Again assuming thatR2 is
dominated byJ (0), Equation 16 can be rearranged to

S2 = C2τe + C1 (18)

whereC1 = J (0)/J0(0) andC2 = (C1 − 1)/J0(0).
For any given values ofτm andR2, C1 andC2 are
constants, andS2 andτe are linearly related. Further-
more, sinceC2 approaches zero asJ (0) approaches
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J0(0), the contour lines tend to become parallel to the
τe axis asR2 increases. This implies thatR2 is much
less sensitive to changes inτe than it is toS2 when
R2 approchesR0

2. SinceR2 is well approximated by
J (0), the qualitative patterns ofR2 contour maps do
not change with the field strength.

NOE Contour maps
In contrast to the previous two cases, the NOE can-
not be approximated by a singleJ (ω) term. Although
we could adopt the simplification proposed by Far-
row et al. (Farrow et al., 1995), and approximate the
NOE by J (ωH)/J (ωN), the resulting expression is
still too cumbersome to predict the behavior of NOE
contour maps based on an analysis of the spectral
density. Although the more complicated behavior of
the NOE contours could be avoided by examining the
dependence of the cross relaxation rate

Rx = d2

4
[6J (ωH + ωN)− J (ωH − ωN)] (19)

on S2 andτe, we do not believe that this is a practi-
cal alternative. Even though the cross-relaxation rate
could be obtained using the relation

Rx = γN

γH
(NOE− 1)R1, (20)

the uncertainty inRx would then be a function of the
uncertainties in both the NOE and theR1 measure-
ments, making our graphical analysis less transparent.
Furthermore, our graphical approach assumes that the
R1, R2, and NOE measurements are independent. If
the NOE is converted into cross-relaxation rate this
will no longer be the case. Also, we feel that it is best
to perform analyses on data in a form which is as close
as practical to the raw experimental measurements.
The reason for this is particularly apparent here, as any
systematic error inR1 will obviously corrupt the NOE
data if the latter is recast as a cross-relaxation rate. In-
stead we briefly summarize the general features of the
NOE contour maps shown in Figure 5. One difference
between NOE contour maps and the contour maps for
R1 andR2 is that the NOE contours are not single-
valued functions ofS2. Contour lines with small (or
negative) NOE values are usually confined within the
lower left region of the map indicating that small NOE
values are generally consistent with high internal mo-
bility on short timescales (τe < 1 ns). Asτm increases,
the spacing between contour lines with small NOE
values decreases while the spacing between those with
large NOE values increases.

The behavior of the allowed model-free parameter
space (S2, τe) for variousτe andτm regimes

A single relaxation measurement is, of course, not
sufficient to allow interpretation in terms of internal
motions. By combining the contour maps correspond-
ing to the different relaxation data, we can achieve a
better understanding of the shape of the final (S2, τe)
solution space and how it is affected by changes inτm.
Since the results are very different depending on the
time scale ofτe relative toτm, we have chosen three
τe/τm ratios to represent three qualitatively different
time scales of the internal motions: (a)τe/τm = 0.02,
for very fast internal motions; (b)τe/τm = 0.2,
for intermediate time scale internal motions; and (c)
τe/τm = 1.0, for internal motions that are on the
time scale of the overall tumbling time. In addition
to the ratio of the internal to the overall correlation
time τe/τm, the ratio of the longitudinal relaxation to
its ‘rigid body’ value R1/R0

1 is an important parameter
because the structure of theR1 contours is very differ-
ent on either side of the criticalτe. In this section, we
use both parametersτe/τm and R1/R0

1 to categorize
the interpretation of the data in different regimes. The
relationship between the two parametersτe/τm and
R1/R0

1 as a function of tumbling time is presented in
Table 2.

To investigate the effect of changingτm on the (S2,
τe) solution space, we synthesized a series of N–H
relaxation data for each of the macromolecular tum-
bling timesτm = 2, 4, 8, and 16 ns, while setting
S2 to 0.8 andτe/τm to 0.02, 0.2, and 1.0. A uniform
experimental uncertainty of± 5% was added to all
the simulated relaxation data. The graphical procedure
for determining the model-free parameters (Jin et al.,
1997) was then applied to analyze the simulated data.
The allowed ranges forS2 andτe are summarized in
Table 3.

For very fast internal motions (i.e.,τe/τm = 0.02)
(Figure 6), the (S2, τe) solution space is usually well-
determined i.e., with a small uncertainty in bothS2

andτe. We found that whenτm = 2 ns (Figure 6a)
the precision of the NOE measurement is particularly
crucial. Without any NOE data, the (S2, τe) solution
space is very poorly determined, withS2 ranging from
0.15 to 0.83 andτe ranging from 0.01 to 3.6 ns. On
the other hand, eitherR1 or R2 (but not both), could
be omitted. WhileR1 andR2 data are equally valu-
able in restricting the solution space in Figure 6a, in
simulations with larger values ofτm, theR1 data are
essential for distinguishing disjoint solution regions
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Figure 4. The transverse relaxationR2 contour maps at different values of overall correlation timeτm: (a)τm = 2 ns,R1 ranging from 0.0 s−1

to 4.0 s−1 with 0.2 s−1 step; (b)τm = 4 ns,R1 ranging from 0.0 s−1 to 6.6 s−1 with 0.2 s−1 step; (c)τm = 8 ns,R1 ranging from 0.0 s−1

to 11.0 s−1 with 0.5 s−1 step; (d)τm = 16 ns,R1 ranging from 0.0 s−1 to 20.0 s−1 with 1.0 s−1 step. A magnetic field strength ofωH =
500 MHz is used here.

which result from the characteristic behavior of NOE
contours. For example, whenτm = 4 ns (Figure 6b),
theR1 data are crucial, as they distinguish between
two disjoint solution regions — a small region cen-
tered around S2 = 0.8 andτe = 0.02τm (i.e., τe

= 80 ps), and a poorly determined region at larger
values ofτe, that covers a broad range ofS2 and
τe values. Given thatR1 data are available that al-
low this distinction, increased precision of eitherR1
or R2 measurements significantly reduces the area of
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Figure 5. The heteronuclear NOE contour maps at different values of overall correlation timeτm: (a)τm = 2 ns,R1 ranging from−3.6 to 0.4
with 0.1 step; (b)τm = 4 ns,R1 ranging from−3.6 to 0.7 with 0.1 step; (c)τm = 8 ns,R1 ranging from−3.6 to 0.7 with 0.1 step; (d)τm =
16 ns,R1 ranging from−3.6 to 0.8 with 0.1 step. A magnetic field strength ofωH = 500 MHz is used here.

the final solution space. Similar conclusions can be
drawn from the simulations carried out with largerτm
values. Whenτm = 8 ns (Figure 6c) orτm = 16 ns
(Figure 6d), theR2 data do not contribute to further
restricting the allowed (S2, τe) region determined by
the combination ofR1 and NOE data with the 5% un-

certainty used here. It is interesting that theτe range
is almost entirely defined by theR1 measurements,
while theS2 range is almost entirely defined by the
R2 measurements (in the absence of NOE data).

For intermediate time scale motions (i.e.,τe/τm =
0.2) (Figure 7), the area covered by the solution space
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Figure 6. The allowed (S2, τe) solution space for fast time scale internal motions obtained from simulated relaxation data (τe/τm = 0.02, see
Table 3): contours ofR1, R2, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas corresponding to the allowed (S2,
τe) solution space are shaded in gray and indicated by an arrow when they are very small. (a)τm = 2 ns:R1 = 2.379± 0.119 s−1, R2 =
3.305± 0.165 s−1, NOE= 0.358± 0.018; (b)τm = 4 ns:R1 = 2.494± 0.125 s−1, R2 = 5.384± 0.269 s−1, NOE= 0.573± 0.029; (c)
τm = 8 ns:R1 = 1.824± 0.091 s−1, R2 = 9.13± 0.457 s−1, NOE= 0.439± 0.022; (d)τm = 16 ns:R1 = 1.169± 0.0584 s−1, R2 =
16.97± 0.849 s−1, NOE= 0.0546± 0.0027. A magnetic field strength ofωH = 500 MHz is used here.

increases considerably. The solution space is largest
at τm = 2 ns (Figure 7a), where the relative error in
S2 is approximately 40% and the relative error inτe
is 550%. Higher precision of theR2 measurements

would be required to further restrict the (S2, τe) so-
lution space. The situation forτm = 4 ns is somewhat
less severe (Figure 7b) – theS2 range is obtained with
an error of≈ 20% whileτe is still quite ill-determined.
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Table 3. Graphical analysis of the simulated relaxation data with 5% error for different values ofτm
a

τm (ns) S2 τe (ns)

τe/τm = 0.02 τe/τm = 0.2 τe/τm = 1.0 τe/τm = 0.02 τe/τm = 0.2 τe/τm = 1.0

2 0.75–0.84 0.48–0.81 0–0.92 0.01–0.06 (0.04) 0.20–2.6 (0.4)≥ 0.12b (2.0)

4 0.76–0.85 0.68–0.86 0–0.97 0.05–0.14 (0.08) 0.17–1.7 (0.8)≥ 0.03b (4.0)

8 0.77–0.84 0.72–0.88 0–0.93 0.11–0.25 (0.16) 0.80–2.3 (1.6)≥ 2.3b (8.0)

16 0.78–0.80 0.75–0.85 0–0.95 0.21–0.49 (0.32) 2.4–4.8 (3.2)≥ 2.8b (16)

aThe true value forS2 is 0.8, the true values forτe are in parentheses, and the magnetic field strengthωH = 500 MHz.
bDefined within 5τm.

Similar to the results for the tumbling time of 2 ns,
improving the precision inR2 would be most effective
in reducing the size of the (S2, τe) solution space. As
τm increases further (Figure 7c, d), theR1 value ap-
proachesR0

1 (τm = 8 ns) or in fact exceedsR0
1 (τm

= 16 ns). As discussed above,R1 provides very lit-
tle information aboutS2 or τe when R1 ≈ R0

1, thus
it is not surprising that the allowed region is not sig-
nificantly restricted by theR1 measurement. While in
this motional regime (τe/τm = 0.2) it is observed that
theR1 data is the least constraining of the three mea-
surements, theR2 and NOE data alone produce two
disjoint allowed regions, andR1 data is required to
eliminate this ambiguity. It should be noted that while
R1 andR2 alone are generally sufficient to obtain the
maximal precision inS2, the NOE data is crucial in
reducing the size of the allowedτe region.

For very slow internal motions (τe/τm = 1.0), the
(S2, τe) solution space is quite large with the simulated
5% uncertainties in the relaxation data used here (Fig-
ure 8 and Table 3). This is a general consequence of
the fact that the relaxation contours become sparse
asτe approches or exceedsτm (Figure 1). However,
with sufficient improvement in the precision of the
relaxation measurements, it is possible to obtain an
acceptable level of precision inS2 and τe even for
motions inτe ≈ τm regime. In particular, improved
precision of theR2 data is most beneficial, especially
for a more precise determination ofS2.

We can summarize the above results for analyzing
protein motions which arenot in the motional narrow-
ing limit in terms of a few empirical ‘rules’. In general,
precise measurements ofR2 and NOE are most useful
for the widest range of internal protein motions (S2,
τe). The uncertainty inS2 is mostly related to the
precision in theR2 measurement. The uncertainty in
τe is mostly related to the precision in the NOE mea-
surement. These ‘rules’ follow directly from the shape
of theR1, R2, and NOE contours seen in Figures 2,

4, 5. For cases where the combination of theR2 and
NOE data results in two disjoint (S2, τe) regions,R1
measurement (usually even with a crude precision) are
also required in order to eliminate one of the disjoint
solution regions. In general, these ‘rules’ are useful
throughout the range of the tumbling times we have
considered (2≤ τm ≤ 16 ns). We repeated the same
analysis at higher field (ωH = 750 MHz) and we found
that these general ‘rules’ still apply.

Application of the graphical method to experimental
data

We can take advantages of the above ‘rules’ in ex-
perimental work to increase the efficiency of data
collection. In using these methods it is crucial to make
reasonable estimates in the uncertainties of the relax-
ation measurements. ForR1 andR2 measurements this
is best done using Monte Carlo estimates of the un-
certainties in decay-curve fitting, based on duplicate
measurements of some decay points (Palmer III et al.,
1991; Mandel et al., 1995), or rms noise measured
in baseline regions of the spectra (Palmer III et al.,
1991; Mandel et al., 1995). For NOE measurements,
baseline rms noise can be used to estimate uncertain-
ties in peak intensities, and these uncertainties can be
propagated through the calculations of NOEs in the
standard manner (Li and Montelione, 1995).

After completing a set of relaxation measurements
and computing the values and uncertainties of the
relaxation parameters, one can apply this graphical
analysis procedure using a cutoff of one standard
deviation in estimated experimental uncertainties to
estimate the allowed (S2, τe) solution space. If the
range ofS2 andτe values is reasonably small the re-
sults can be regarded as final. If the range ofS2 and/or
τe values is large, and if better definition of the (S2,
τe) solution space is desired, one or more measure-
ments need to be repeated with higher precision. By
examining each type of relaxation data using the con-
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Figure 7. The allowed (S2, τe) solution space for intermediate time scale internal motions obtained from simulated relaxation data
(τe/τm = 0.2, see Table 3): contours ofR1, R2, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas correspond-
ing to the allowed (S2, τe) solution space are shaded in gray and indicated by an arrow when they are very small. (a)τm = 2 ns:R1 =
2.587± 0.129 s−1, R2 = 3.521± 0.176 s−1, NOE= 0.123± 0.0062; (b)τm = 4 ns:R1 = 2.755± 0.138 s−1, R2 = 5.680± 0.284 s−1,
NOE= 0.465± 0.023; (c)τm = 8 ns:R1 = 2.162± 0.108 s−1, R2 = 9.58± 0.491 s−1, NOE= 0.620± 0.031; (d)τm = 16 ns:R1 =
1.548± 0.0774 s−1, R2 = 17.72± 0.886 s−1, NOE= 0.726± 0.036. A magnetic field strength ofωH = 500 MHz is used here.

tour plots and applying the ‘rules’ mentioned above,
it is possible to determine which measurements need
to be made more precisely in order to most efficiently
improve the precision in the estimate of the motional

parameters for a particular residue. Such an analysis
would be helpful in planning further relaxation experi-
ments when the precision in the model-free parameters
could be improved by a judicious choice of additional
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Figure 8. The allowed (S2, τe) solution space for slow time scale internal motions obtained from simulated relaxation data (τe/τm = 1.0, see
Table III). Contours ofR1, R2, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas corresponding to the allowed (S2,
τe) solution space are shaded in gray and indicated by an arrow when they are very small. (a)τm = 2 ns:R1 = 2.760± 0.138 s−1, R2 =
3.755± 0.188 s−1, NOE= 0.299± 0.015; (b)τm = 4 ns:R1 = 2.994± 0.150 s−1, R2 = 6.114± 0.306 s−1, NOE= 0.662± 0.033; (c)
τm = 8 ns:R1 = 2.273± 0.114 s−1, R2 = 10.30± 0.515 s−1, NOE= 0.775± 0.039; (d)τm = 16 ns:R1 = 1.344± 0.0672 s−1, R2 =
18.97± 0.95 s−1, NOE= 0.809± 0.040. A magnetic field strength ofωH = 500 MHz is used here.

relaxation measurements; this analysis will be espe-
cially useful when the number of residues with large
(S2, τe) solution spaces is small, or when there are

certain key residues whose dynamics are of particular
interest.

We use the15N relaxation data of Asn6 and Tyr38

of hTGFα discussed previously (Li and Montelione,
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1995; Jin et al., 1997) as examples. The (S2, τe) solu-
tion space of Asn6 is quite large –S2 varies between
0.56 and 0.85 whileτe varies between 0.1 and 2.3 ns
(Figure 9a). The originalR1 relaxation measurement
for Asn6 (2.61±0.71 s−1) has a relative error of more
than 25%, which is much greater than that of theR2 re-
laxation measurement (5.53± 0.58 s−1) (about 10%).
Naively, one might think that in this situation an im-
provement in the precision ofR1 relaxation data would
be most useful. However, the simulated results pre-
sented in Figure 9b show that even a fourfold increase
in the precision of theR1 measurement offers very
little improvement in the determination of the allowed
(S2, τe) space. If instead we improve the precision of
theR2 measurement by a factor of 2, we obtain a sig-
nificant improvement of the range ofS2 (Figure 9c):
S2 then varies between 0.71 and 0.85.

The allowed (S2, τe) solution space of Tyr38 is
so large that little useful information about the mo-
tion can be extracted (Figure 10a). This portion of the
hTGFα molecule is within the receptor-binding epi-
tope (Li and Montelione, 1995), and is critical to its
biological function. According to the ‘rules’ described
above, since the NOE measurement is already very
precise (less than 2% error) and is most restricting
(Figure 10a), additional measurements should focus
on improving theR1 and/orR2 measurement(s). A
moderate increase in the precision of theR2 measure-
ment results in little improvement in the solution space
(Figure 10b), while a larger increase in precision of the
R2 measurement results in two disjoint allowed (S2,
τe) regions (Figure 10c). In this situation, a moder-
ate increase in the precision of theR1 measurement
eliminates one of the two disjoint (S2, τe) regions and
provides a significant improvement in the precision
of the allowed (S2, τe) space (Figure 10d). It is in-
teresting to note that in this case improving theR1
measurement would be sufficient to greatly improve
the precision of the estimates of motional parameters.

Based on our experience of applying the graphi-
cal analysis to many relaxation data sets available in
the literature (Kördel et al., 1992; Li and Montelione,
1995; Yamasaki et al., 1995; Mandel et al., 1996;
Stivers et al., 1996; Epstein et al., 1995; Williams
et al., 1996; Liu et al., 1996; Cai et al., 1996; Zhou
et al., 1996; Hodsdon and Cistola, 1997; Farrow et al.,
1997; Papavoine et al., 1997), we suggest that given
the restriction of working at a single magnetic field
strength, all three (R1, R2, and NOE) relaxation pa-
rameters should be measured for each site, and that
theR2 and NOE measurements must have high pre-

cision (≤ 5%) in order to obtain a good estimate
of the model-free parameters while a less preciseR1
measurement is generally sufficient. This proposal is
based on the assumption that the chemical exchange
contribution toR2 can be determined precisely.

Internal motions on timescales close to or slower
than the overall tumbling time

In their original paper (Lipari and Szabo, 1982), Li-
pari and Szabo derived the model-free expression for
the spectral density function (Equation 11). It should
be recognized that Equation 11 makes no assump-
tions about the relative magnitudes ofτe and τm;
the only assumptions are that the overall and internal
motions are uncoupled and the correlation functions
corresponding to these motions decay as single expo-
nentials. Despite popular misconceptions, under these
assumptions, Equation 11 is also valid whenτe ≥ τm.
However, asτe gets much larger thanτm, the spectral
density functions (Equation 11) go to their ‘rigid body’
limits, and the relaxation data are insentitive to internal
motions much slower than the overall tumbling. They
then introduced additional simplifications: (a) if the
overall motion is considerably slower than the internal
motions (τe � τm), Equation 11 becomes

J (ω) = 2

5

[
S2τm

1+ (ωτm)2
+ (1− S2)τe

1+ (ωτe)2

]
. (21)

(b) if τe is in the extreme narrowing limit ((ωτe)
2 �

1, whereω is the largest frequency at which the spec-
tral density must be evaluated) Equation 21 can be
further simplified to

J (ω) = 2

5

[
S2τm

1+ (ωτm)2
+ (1− S2)τe

]
. (22)

Furthermore Lipari and Szabo showed that Equa-
tion 22 is exact for the more general situation when
CI (t) is expressed as a linear combination of an
arbitrary number of exponential decays

CI (t) = S2 +
∑
i=1

aie
−t/τi , (23)

if (1) the overall motion is isotropic, (2) internal mo-
tions are much faster than the overall tumbling (i.e.
the internal motions are in the extreme narrowing
limit), and (3)τe is defined to be the area under the
correlation function, i.e.

τe(1− S2) =
∫ ∞

0
(CI (t)− S2)dt. (24)
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Figure 9. The allowed (S2, τe) space obtained from the experimental relaxation data of residue Asn6 of hTGFα with improved relaxation
measurement (τm = 3.76 ns). Contours ofR1, R2, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas corresponding
to the allowed (S2, τe) solution space are shaded in gray and indicated by an arrow when they are very small. (a) Original relaxation data (Li
and Montelione, 1995),R1 = 2.61± 0.71 s−1, R2 = 5.53± 0.58 s−1, NOE= 0.44± 0.03; (b) fourfold increase in theR1 precision; (c)
twofold increase in theR2 precision.

Equation 23 also applies in situations in which some
τi > τm provided that the order parameter is redefined
to exclude the averaging due to those motions.

Lipari and Szabo showed that although Equa-
tion 11 was constructed assuming single exponential

decay for the internal correlation function, it could still
be applied without error to interpret multi-exponential
decay provided that the internal motions are either
much slower or much faster than the overall tumbling.
When the internal motions are close to the tumbling
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Figure 10. Allowed (S2, τe) space obtained from the experimental relaxation data of residue Tyr38 of hTGFα with improved relaxation
measurement (τm = 3.76 ns). Contours ofR1, R2, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas corresponding
to the allowed (S2, τe) solution space are shaded in gray and indicated by an arrow when they are very small. (a) Original relaxation data (Li
and Montelione, 1995),R1 = 2.83± 0.23 s−1, R2 = 5.85± 0.59 s−1, NOE= 0.63± 0.01; (b) twofold increase in theR2 precision; (c)
fourfold increase in theR2 precision; (d) twofold increase in theR1 precision.

time the situation is more complex. This conclusion
appears to have led to the assumption by some workers
that the model-free formalism is not applicable at all
when the correlation function(s) describing the inter-

nal motions decay on a time scale approaching that
of the overall motions. However, this assumption is
incorrect. As long as the overall and internal motions
are separable and the correlation function describing
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Figure 11. Allowed (S2, τe) solution space obtained from relaxation data with multiple time scale internal motions (τm = 4 ns and the relative
error= 2%). Relaxation data are simulated using the following inputs: the areas corresponding to the allowed (S2, τe) solution space are
shaded in gray and indicated by an arrow when they are very small. Contours ofR1, R2, and NOE are plotted in thick, dashed, and thin lines,
respectively. (a) The extended Lipari-Szabo model (multiple time scale motion),τf = 10 ps,τs = 2 ns,S2

f
= 0.9, S2

s = 0.9, ωH = 500 MHz,

(b) the simple Lipari-Szabo model (single time scale motion),τe = 10 ps, S2 = 0.81, ωH = 500 MHz, (c) the simple Lipari-Szabo model
(single time scale motion),τe = 2 ns, S2 = 0.81, ωH = 500 MHz, (d) the extended Lipari-Szabo model (multiple time scale motion),
τf = 10 ps,τs = 2 ns,S2

f = 0.9, S2
s = 0.9, ωH = 1 GHz.

the internal motion decays as a single exponential,
Equation 11 is exact and may be applied to extract the

motional parameters even though the internal motion
and overall tumbling time scales are commensurate.



489

Even when the internal motions cannot strictly be de-
scribed by a single exponential, the effective order
parameter extracted using Equation 11 can sometimes
provide information about internal motions on the
same time scale as the overall motion. One example
corresponds to the use of the extended Lipari-Szabo
equation (Clore et al., 1990b) to describe two internal
motions, one in the extreme narrowing limit and the
other close to the overall motion. For this situation
the internal correlation function effectively decays as
a single exponential so Equation 11 is again valid.
Lipari and Szabo actually considered the problem of
detecting internal motions which are slow on the NMR
time scale ((ωτe)

2 > 1) as well. They estimated in a
qualitative way that order parameters larger than∼ 0.3
could be detected with a precision of∼ 30%. A quan-
titative examination of this problem requires the kind
of analysis reported in this paper. Apart from an exam-
ination of the validity of the approximations inherent
in the model-free formalism, we can see from the re-
sults of the previous sections (Figures 6–8), that when
the internal motion is no longer in the extreme nar-
rowing limit, however, very high precision relaxation
measurements are required in order to extract any use-
ful information about either the magnitude or the time
scale of these slower motions.

Multiple timescale internal motions uncovered by
ultra-high field NMR relaxation experiments

This paper has been concerned with the effect of finite
precision in the experimental NMR relaxation data on
the estimation of the magnitude and time scale of the
protein internal motion in cases where the internal mo-
tion is predominantly occurring on one time scale. The
effects of finite precision in the measurements on the
detection of multiple time scale internal motions, an
issue related to the simultaneous analysis of relaxation
data recorded at multiple field strengths, will be the
subject of a separate communication. However, we
briefly consider here the advantage of relaxation ex-
periments performed at a single ultra-high field for
the detection of two internal motions, one of which
is on the picosecond time scale and the other on the
nanosecond time scale.

In the original Lipari-Szabo model, only one ef-
fective correlation time for internal motion is used.
Clore et al. (Clore et al., 1990b) proposed an ex-
tension of the Lipari-Szabo model which includes a
second correlation time in order to deal with situa-
tions where internal motions occur on two distinct

timescales which are at least one order of magni-
tude apart. The spectral density functionJ (ω) in the
extended model-free formalism is given by

J (ω) = 2

5

[
S2τm

1+ (ωτm)2
+ (1− S

2
f )τf

1+ (ωτf )2

+ (S
2
f − S2)τs

1+ (ωτs)2

]
. (25)

What happens when simulated NMR relaxation
data is generated using the extended model-free for-
malism (Equation 25) and interpreted using the single
exponential approximation (Equation 11)? To explore
this question, we simulated relaxation data that cor-
responds to motion on two time scales (a fast motion
(τf = 10 ps) withS2

f = 0.9 and a much slower motion

(τs = 2 ns) withS2
s = 0.9) using Equation 25 (τm =

4 ns andωH = 500 MHz). A very small experimen-
tal uncertainty (2%) was assumed. We then analyzed
the data using the original Lipari-Szabo formalism.
Surprisingly, there is a well defined (S2, τe) solution
space centered at S2 = 0.85 andτe = 50 ps (Fig-
ure 11a). These solutions are similar to what would
have been obtained from relaxation data generated us-
ing the simple Lipari-Szabo model with a single fast
internal motion (S2 = 0.81, τe = 10 ps; Figure 11b),
but very different from what would have been obtained
from relaxation data generated with only slow internal
motion (S2 = 0.81, τe = 2 ns; Figure 11c). Thus, even
very high precision relaxation measurements at 500
MHz are sometimes insufficient to detect motions on
two time scales. We then repeated this procedure us-
ing the same motional parameters with relaxation data
simulated at ultra-high field (1 GHz). In these simula-
tions, the results were more encouraging (Figure 11d)
– no (S2, τe) solutions exist that are consistent with
the single exponential approximation (Equation 11).
This implies that higher field spectrometers can be
very useful in helping to detect motions on multiple
time scales which appear as deviations from the sim-
ple Lipari-Szabo model. A systematic investigation of
the use of multiple field experiments to probe multi-
ple time scale motions will be the subject of a future
communication. It will be desirable to use higher field
spectrometers in the future to reduce the ambiguity
of the information about internal dynamics of bio-
molecules that could be extracted from the relaxation
measurements.

The fact that a well-defined solution space exists
assuming that the motion is occurring on only one
time scale when the data was generated from a model
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with motion on two distinct time scales in Figure 11a
suggests that the model-selection problem may be far
more insidious than has been previously appreciated.
As is well-known, the ‘model-free’ formalism as ap-
plied in the NMR literature actually consists of a set of
nested models which make use of the parametersS2,
τe,Rex (a phenomenological exchange contribution to
R2), andS2

f . Various statistical model-selection pro-
cedures, such as significance testing (e.g. Nicholson
et al., 1995) and a combination of significance and
hypothesis testing (e.g. Mandel et al., 1995; Yamasaki
et al., 1995), have been used to determine which sub-
set of the above parameters is needed to adequately
describe the relaxation data for a given residue.

These statistical procedures in general do not pro-
vide a measure of the amount of evidence in favor of
a given model, but rather can only ‘accept’ or ‘reject’
a given model. This is problematic, as Figure 11 sug-
gests that in fact there may not be enough information
in the three noise-corrupted data points to decisively
accept one model in favor of another. The best pro-
cedure in such a situation would be to resign oneself
to the fact that the choice of model is itself uncertain,
and that inferences concerning the parameter values
should take into account that uncertainty. Of course,
one could invoke some form of Occam’s Razor, and
choose to consider only the model with the smallest
number of parameters which adequately fits the data.
However, this provides no guidance in cases where the
number of parameters is equal (e.g., (S2, τe, Rex ) vs.
(S2, τe, S2

f )). More seriously, the arbitrary selection
of one model based upon ambiguous data could result
in misleading estimates of the parameter values if the
‘best-fit’ parameters under the competing models are
significantly different.

The situation is further complicated by the fact
that the model-selection methods used by Mandel et
al. (Mandel et al., 1995) and Yamasaki et al. (Ya-
masaki et al., 1995) implicitly assume that the overall
correlation timeτm is known precisely. In fact, Korzh-
nev et al. (Korzhnev et al., 1997) have recently shown
that if the bulk of the residues in a protein exhibit slow
time scale motion, then the traditional method will
mis-estimateτm and will result in an incorrect inter-
pretation of the relaxation data. Furthermore, it is well
known that even small changes in the assumed value
of τm can change which model is selected for a given
residue (Li and Montelione, 1995). Thus, uncertainty
in the estimate ofτm leads directly to an uncertainty in
the model selection.

Unfortunately, the classical statistical methodol-
ogy used by Mandel et al. (Mandel et al., 1995) and
Yamasaki et al. (Yamasaki et al., 1995) does not pro-
vide the theoretical machinery needed to adequately
deal with model uncertainty. Bayesian statistical meth-
ods, on the other hand, are far better equipped to assess
the weight of evidence in favor of a model given a set
of data, and allow for model uncertainty (Bretthorst,
1990b; Kass and Raftery, 1995). In particular, one
may calculate the marginal likelihood of the data given
modelMi , which is defined to be

P(D|Mi) =
∫
P(D|2i)P (2i)d2i, (26)

where2i is the vector of parameters under thei-th
model, P(D|2i) is the likelihood of the data, and
P(2i) is the prior probability of2i . P(D|Mi) can be
interpreted as the weight of evidence in favor of model
Mi , and the ratio

Bij = P(D|Mi)

P(D|Mj )
, (27)

known as the ‘Bayes factor’, is an estimate of the rel-
ative odds in favor ofMi vs.Mj (Bretthorst, 1990b;
Kass and Raftery, 1995). Development of a practical
Bayesian model selection strategy for the the analysis
of relaxation data which incorporates uncertainty in
τm is currently underway in our laboratories.

Conclusions and future directions

The graphical procedure used for the analysis of relax-
ation data allows one to directly visualize the impact
of experimental uncertainties on the precision of es-
timated model-free parameters. Although the relation-
ship between the precision of relaxation measurements
and the precision of (S2, τe) parameters is far from
being simple due to its dependence onτm, τe, and
R1/R0

1, nevertheless we find that, in general, in order
to obtain a good estimate of the motional parameters,
one may want to strive for the highest precision in
the R2 and NOE measurements at the expense of a
fair precision in theR1 measurement. The widely em-
ployed assumption that the effective correlation time
τe is required to be significantly faster than the over-
all tumbling timeτm in the context of the model-free
formalism is not a prior condition for the applicability
of the model-free formalism, but a consequence of the
limited precision in the NMR relaxation data.

Analysis of relaxation data simulated using multi-
ple time scale internal motions indicates that at typical
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field strengths (i.e., 500 MHz) even very high preci-
sion relaxation measurements are sometimes not suffi-
cient to detect motions on two time scales, whereas the
detection can be achieved at very high field strengths
(e.g., 1 GHz). This suggests that the development
of ultra-high field (> 800 MHz) spectrometers will
improve our ability to characterize protein dynamics
on multiple time scales. Finally, we have briefly dis-
cussed the advantages of the Bayesian statistical meth-
ods over the classical statistical methods presently
used for the model-selection problem.

In the analysis presented in this paper, we have as-
sumed that the overall tumbling timeτm is known with
high precision and negligible systematic error. Korzh-
nev et al. (Korzhnev et al., 1997) have recently shown
that theτm (often obtained from the ratio R2/R1)
will be underestimated if the majority of the mole-
cule undergoes internal motions that are not in the
motional narrowing limit. They also noted that there
are significant discrepancies among the reported rota-
tional correlation times for the same protein obtained
from different experiments. For example, values ofτm
varying between 7 ns and 10 ns have been reported
for lysozyme using different experimental techniques.
The analysis of internal motions in proteins which
are not in the motional narrowing limit depends upon
an analysis of the overall macromolecular tumbling
in ways which are now becoming better understood.
In this context we note that several recent studies
have demonstrated that even a small amount of rota-
tional anisotropy can result in a misinterpretation of
the relaxation data (Schurr et al., 1994; Tjandra et al.,
1996b; Luginbühl et al., 1997). A more general analy-
sis of protein dynamics based on the Lipari-Szabo
model-free approach must consider both the precision
and accuracy in the overall tumbling parameters and
its effect on model selection procedure. This will re-
sult in an increase in the number of fitting parameters
which will require additional relaxation measurements
if the problem is not to be underdetermined. We
are currently developing general strategies for collect-
ing such data and an appropriate framework for their
analysis based on Bayesian statistical methods.
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