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Abstract

In this paper we make use of the graphical procedure previously described [Jin, D. et al.J 1887 Chem. Saoc.

119 6923-6924] to analyze NMR relaxation data using the Lipari-Szabo model-free formalism. The graphical
approach is advantageous in that it allows the direct visualization of the experimental uncertainties in the motional
parameter space. Some general ‘rules’ describing the relationship between the precision of the relaxation measure-
ments and the precision of the model-free parameters and how this relationship changes with the overall tumbling
time (x,,,) are summarized. The effect of the precision in the relaxation measurements on the detection of internal
motions not close to the extreme narrowing limit is analyzed. We also show that multiple timescale internal motions
may be obscured by experimental uncertainty, and that the collection of relaxation data at very high field strength
can improve the ability to detect such deviations from the simple Lipari-Szabo model.

Introduction lation time, t., which is a measure of the rate of the
internal motion. This framework, developed by Lipari

NMR relaxation (1, T», NOE) experiments are avery and Szabo (Lipari and Szabo, 1982), has been applied
important tool for studying the internal dynamics of PY many groups to interpret NMR relaxation experi-
proteins (Abragam, 1961; London, 1980). Dynami- ments on proteins (see for example Kay et al., 1989;
cal information can be extracted from the relaxation Clore etal., 1990a; Palmer Ill et al., 1991; Kordel et
data using various analytical models for the dynam- @l., 1992; Schneider et al., 1992; Stone et al., 1992;
ics whose parameters may be fit to the relaxation Orekhov et al., 1994; Mandel et al., 1995; Li and
data (Woessner, 1962; Wallach, 1967; Kinosita et al., Montelione, 1995).

1977; Wittebort and Szabo, 1978; Brainard and Szabo, ~ In most experimental studies to date, the model-
1981). Another approach involves the direct mapping free parameters have been estimated by minimizing
of the spectral density function from experimental the residual sum-of-square error function between
data (Peng and Wagner, 1992). The approach mostthe calculated and experimental relaxation parame-
commonly used is based on the so-called ‘model- f€rs (Palmer 11 et al., 1991). Although this fitting
free’ formalism (Levy et al., 1981; Lipari and Szabo, procedure is statistically legitimate, the effects of the
1982; Clore et al., 1990b). The information contained uncertainties in the measured relaxation rates on the
in the relaxation data is assumed to be completely Precision of the model-free parameters is far from
specified by two quantities: a generalized order para- transparent.

meter,$2, which is a measure of the spatial restriction In earlier work (Jin et al., 1997) we demonstrated

of the internal motion, and an effective internal corre- how the uncertainties in the relaxation rates may be
mapped onto thesg, t.) plane, allowing the informa-

*To whom correspondence should be addressed. tion content of the experimental data to be visualized
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graphically. In this paper, we use this method to ob-

It should be noted that the factorization of the total

tain a better understanding of how these uncertaintiestime correlation function into a product of correla-
propagate, and how this propagation is influenced tion functions corresponding to overall tumbling and

by the correlation time for the overall macromolec-
ular tumbling ¢,,) and the dynamical regime of the
motion. We find that the precision in the estimated mo-
tional parameters decreases rapidlytagpproaches
the tumbling timer,,. Although the range of validity
of the Lipari-Szabo model-free formalism was clearly
delineated in the original papers (Lipari and Szabo,

1982), there is a widespread misconception that the

model-free approach is applicable only whenis
much faster than,,. In fact, there is no such priori
limit on the range oft,. We reexamine this problem
using numerical examples to illustrate the precision
that is required in order to extract useful information
about internal motions on time scales which are notin
the extreme narrowing limit. We note that the graph-
ical method has been applied previously in a more
limited way to extract protein order parameters and
effective correlation times from NMR experiments
(Henry et al., 1986; Weaver et al., 1988; Fushman
etal., 1994).

Background

NMR relaxation of nuclei in a macromolecule tum-
bling in solution is determined by the motions through
the time correlation functiorC (¢). Assuming that the
overall motion of the macromolecule is isotropic, and
that the overall and internal motions are uncoupled,
the total time correlation functiofi(z) can be factored
into a product of correlation functions

C() =Co®mCr (). 1)
The correlation function for overall isotropic rota-
tional motionCy (¢) is given by
1

==t/

z¢ . 2)
whereD,, andr,, are the rotational diffusion constant
and correlation time of the macromolecule, respec-
tively. For dipolar NMR relaxation the correlation

function for the internal motion€&, (¢) is given by

Ci(t) = (P2(1L(0) x L (1)), (3)
where the unit vectofl points along the internu-
clear axis between the dipolar coupled nuclei in the

macromolecule-fixed frame ankb(x) is the second
Legendre polynomial

1
CO (t) — ge_GDmt —

1
Po(x) = 5(3;(2 - 1. (4)

internal motions does not depend on a separation of
time scale between these motions. For most native
proteins which are sufficiently well structured that

their rotational tumbling can be charaterized by a sin-
gle (time independent) diffusion tensor, we expect
that the factorization of Equation 1 is a very good

approximation.

The relaxation of protonate¢PN nuclei is me-
diated primarily by dipole-dipole interactions with
the attached protons and secondarily by chemical
shift anisotropy. If cross-correlation effects are sup-
pressed (Boyd et al., 1990), the longitudinal relaxation
rate (R1), transverse relaxation rateR{), and the
nuclear Overhauser enhancement (NOE) are given by

2

Ry = Z[J((DH — wN) + 3J (wN)
2,2
+6J (wH + on)] + 3 N J(on) %)
d2
Ry = 3[41(0) + J(oH — on) + 3J (oN)
+6J (wH) + 6J (wH + wN)]
2 2
+ =47 (0) + 3/ (on)] (6)
NOE=1+

YH [6J (0 + wN) — J(wH — oN)]
YN [/ (@0H — o) + {3+ 44268 /(3d2)}J (0N) + 6J (0 + oN)]

()

where the spectral density function,(w), is the
Fourier cosine transform of the total correlation func-
tion,

(8)

and yq and yn are the gyromagnetic ratios for the
proton and nitrogen respectivelyy andwy are the
Larmor frequencies ofH and 1°N, and the chem-
ical shift anisotropy (CSA) valueA = §; — 31

(the difference between the parallel and perpendicular
components of the chemical shift tensor). The constant
d is given by
YHYNT o

3 9
rNH AT

J(w) = 2/oo coSwr) C(t) dt,
0

d=

)



wherefi is Planck’s constant divided by ryy is the
amide!®N-'H bond length, ang. is the permeability
of free space.

If we assume thaf’; () decays to a plateau value
for t+ — oo and that the decay proceeds in a single-
exponential manner characterized by an effective cor-
relation timer,, thenCy (¢r) can be written as

Ci(t) = §?+ (1 — §?)e™ /", (10)

As stated in the original paper (Lipari and Szabo,
1982), the plateau valus? is a model-independent
measure of the degree of spatial restriction of the inter-
nal motion, whose value can range from 0 (when the
vector samples all possible orientations) to 1 (when
the vector is completely restricted); the second para-
meter,t,, is related to the rate of the internal motion.
It is important to note that althoug$? has a model-
independent significance,, depends on the spatial
nature of the motion and can be related to micro-
scopic rate constants only within the framework of a
particular dynamic model.

Having obtained an expression for the total time
correlation function, one can readily compute the
spectral density function in the model-free formalism:

2 $21, (1— 9t
J = — 11
(@ =3 [l+ (0tm)? 1+ (wt)z} (n
where
1 1 1
o4 (12)
T Te Tm

In the absence of internal motions (e.g., wisén= 1),
the spectral density function is reduced to its isotropic

‘rigid body’ limit
2
Jo(w) = <

Tm
S [1 + (wtm)2j|
which depends only on the overall tumbling timg
of the protein.
If t, is known, then the relaxation raté$ (i =
1, 2, 3; R3 = NOE) can be directly calculated §?

(13)
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R; as a function ofs? and+,. For a given relaxation
measuremenR; + AR, the area in thes?-1, plane
between the contour lines correspondindgte- AR;

and Rj + AR contains all (§2, T.) points consistent
with that experimental measurement. The intersection
of these areas for all three relaxation values defines
the complete solution space for the model-free pa-
rameters, and contains alf{, t.) points which are
consistent with all three NMR relaxation measure-
ments. Our graphical method can be viewed as a
simple example of ‘set-theoretic estimation’, a gen-
eral data analysis strategy that has been applied to a
wide variety of problems in the electrical engineering
literature (Combettes, 1993). Alternatively, our solu-
tion space can be interpreted as being proportional to
the Bayesian posterior probability densiB(s?, .

| D) under a uniform prior and box-shaped likelihood
function (see Bretthorst (1990a) for an introduction to
Bayesian statistics in an NMR context). This treat-
ment is somewhat simplistic, in that eack?( t.)
point inside the solution space has an equal proba-
bility. As an alternative, we can replace the uniform
error distributions with Gaussian (normal) probability
distributions. The results presented in this paper are
based on uniform error distributions. When Gaussian
error distributions are used instead, the conclusions
are qualitatively the same as obtained using a uniform
error distribution.

In the following section the graphical procedure
is used to analyze how experimental uncertainties in
the NMR relaxation measurements affect the precision
in the estimates of the Lipari-Szabo parameters which
describe the protein motions. The results depend upon
the assumed precision in the relaxation measurements.
The precision reported in publications varies widely;
the methods used to estimate the uncertainties vary
in statistical rigor, and many publications do not re-
port any estimate of the precision. The synthetic data
discussed in this paper assumes uncertainties in the
NMR relaxation data in the range of 2% — 5%. The
highest precision reported in the current literature for

andt, are gi\/en, whereas it is not possib|e to eval- these kinds of measurements is on the order of 1%.
uate S2 or 1, analytically when the relaxation rates Although not considered further here, we note that the
R1, Rz, and NOE are known. The precision of the approximations upon which Equations 5-7 are based,
relaxation data may be represented by an interval of especially the two-spin approximation and that the
the form R + AR;, where AR; is the uncertainty =~ CSAA isindependent of conformation (Tjandraetal.,

in the i-th measurement. In other words, we assume 1996a), need to be examined more carefully when
that due to experimental uncertainties, the relaxation considering the theoretical limits of the precision that

measurements are uniformly distributed in the inter- itis presently possible to obtain in the relaxation mea-
val (Ri — AR;, Ri + AR;). Our graphical procedure surements and the meaning of this estimate in the
involves the construction of contour lines of constant context of these approximations.
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Results and discussion

Generic features of the contour maps

In order to provide a general overview of the behavior
of the relaxation rates as a function$% and-,, con-

tour maps ofR1, Ry, and NOE were constructed for

a representative tumbling time,{ = 4 ns) and field
strength ¢y = 500 MHz), and are shown in Figure 1.

In each map, the increment between two adjacent con-
tour lines was kept constant. There are several feature
common to all three maps that are worth noticing.
First, smaller relaxation rates and NOE values (in the
lower left corner of each map) generally correspond to
smaller values o$2 andr,. Contour lines correspond-
ing to smallRy, Ry, or NOE values cover a small range
of (52, t.) values, while contour lines corresponding
to larger relaxation rates in general cover a broader
range. Larges? values and/or large, values can only

be found along these latter contour lines. This implies
that, for a given value of,,, larger relaxation rates
usually correspond to internal motions that occur with
a smaller magnitude or on a longer time scale and is
consistent with the general observation that fast inter-
nal motions tend to decrease the relaxation rates (Levy
et al., 1981). Furthermore, as the relaxation rates in-
crease and approach their ‘rigid body’ values (denoted
by RY, RY, and NOE), the spacing between contour

S

R1 Contour maps

Figure 2 shows contour diagrams 1 relaxation for
macromolecular tumbling times of 2 ns, 4 ns, 8 ns,
and 16 ns. Fot,, = 2 ns (Figure 2a), the relationship
betweers? andr, for a givenRy value is nearly linear.
However, fort,, = 4 ns (Figure 2b), the contour map
is qualitatively different. The special feature of this
map is related to the ‘rigid body’ value??. When

Ry is small (i.e.< 2.0 s71), there is little difference
from the behavior at 2 ns. However, Rg approaches
R? (3.01 st for 1,, = 4 ns), the contour lines be-
come nearly parallel to thé? axis. When R=RY?, the
contour is in fact perpendicular to the axis. Futher-
more,Rg’ is no longer the maximal value dt;, and
contour lines corresponding to R R‘f can be found

to the right side of this ‘rigid body’ contour. In this
region of the contour map, the effect of internal mo-
tions is to increas&®; above the corresponding value
for the rigidly tumbling protein. This effect can be
seen most clearly in Figures 2c and 2d. The origin
of these features can be understood by examining the
conditions under which the Lipari-Szabo spectral den-
sity (Equation 11) reduces to the ‘rigid body’ limit
(Equation 13). They can be found simply by setting
Equations 11 and 13 equal to each other. We find that
J(w)=Jo(w) only if

(2 — D)(t — ;) (1 — w1,1) = 0, (14)

lines becomes less dense. This is particularly apparent

in the R1 and NOE contour maps (Figures 1a and 1c),
and implies that the relaxation rates are least sensi-
tive to changes ir§? andt, when they are close to
their corresponding ‘rigid body’ values. This graphical

analysis demonstrates that when measured relaxation

parameters are cIoseRf and NOE it is necessary to
have much higher precision in the corresponding mea-
surements in order to sufficiently restrict the solution
space of motional parameters.

Behavior of the contour maps as a function of overall
tumbling time ¢,,,)

In order to provide more insight into the impact of
changes int,, on the observed relaxation rates, con-
tour maps were constructed for several values of the
overall tumbling time €, = 2, 4, 8, 16 ns) assuming

a field strength of 500 MHz (Figures 2-5). The be-
havior of the contour map of each type of relaxation
parametersKi, R, and NOE) is described below.

from which we can see that the following are the
sufficient conditions:

§2=1
T, = 00
3. Te = tm/((l)zt,?n — 1) (for Wty > 1)

It follows, therefore, that ift, = T, /(w212 — 1),
J (o) is equal toJo(w), and is independent af?.
Since R1 is dominated byJ(wy), R1 will also be
independent ok? if the effective internal correlation
time of the internal motions equals the ‘critical’.
The value of this ‘criticak,’ is approximately 6.9 ns
for 1,, = 4 ns andwy = 50 MHz; which is some-
what different from the actual value of the ‘critical
(5.03 ns for the same values of, andwy) because
terms other than/ (wy) also contribute toR;. The
true ‘critical T’ can be found by equating the full ex-
pressions foRy andR‘l) obtained using Equation 5. It
is clear that the information content &f concerning
the internal motional averaging?, is at a minimum
when the measured; value approacheR‘l). There
is a simple explanation for why, given a sufficiently
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Figure 1. Contour maps of2 andx,. for different types of->N NMR relaxation measurements: (a) longitudiml contours, ranging from
0.03 s t0 3.03 s with 0.1 7% step, R = 3.01 s72, (b) transversek, contours, ranging from 0.2 to 6.6 s™1 with 0.2 s™!step,

R = 6.62 s71, (c) heteronuclear NOE contours, ranging frer.6 to 0.7 with 0.1 step, NOE= 0.718. For these contour maps the

spectrometer frequenciegq andwy were chosen to be 500 MHz and

50.7 MHz respectively, and the overall correlation,fime4 ns. To

illustrate the mapping procedure, a region is shaded in each map corresponding to the following sample NRR-d&&8+ 0.05 st Ry

=5.90+0.10 1, NOE= 0.55+ 0.05.

long tumbling time such that,, > 1/w, there exists
a value oft, for which Ry = Rg. In Figure 3, the
‘rigid body’ longitudinal relaxation rateeg’ is plotted
as a function of tumbling time,,. The maximum re-

laxation rate I¥'AX occurs whernt,, = 1/w. For an
wn of 50 MHz, R4X (3.13 s'1) occurs at a tumbling
time tM4X ~ 3.0 ns. The macromolecular tumbling

m
changes from the faster motion limit to the slow mo-
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Figure 2. The longitudinal relaxatiorRy contour maps at different values of overall correlation titpe (a) T, = 2 ns, Ry ranging from
0.0s51t0 2.9 s with 0.1 571 step; (b)t,, = 4 ns, Ry ranging from 0.035 to 3.03 s with 0.1 571 step; (c)t,» = 8 ns,Rq ranging from
0.0s1t03.1 s with 0.1 571 step; (d)r,, = 16 ns,Rq ranging from 0.0 51 to 3.1 s with 0.1 571 step.

tion limit at t¥4X. For any value of B < RMAX, tumbling (v! = .7 + 1) to produce the same
there are two tumbling times corresponding to this longitudinal relaxation rate as the overall tumbling
relaxation rate; one longer tharfﬂAX and a second alone, R(t) = Rg(rm). When this condition is ful-
one shorter tham,",’,'“. Thus, foroy at 50 MHz and filled, the longitudinal relaxation rate is independent
tumbling times greater than 3.0 ns, internal motions of

a certain frequencyr() can combine with the overall
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Figure 3. The ‘rigid body’ longitudinal relaxation ratﬁ'? as a func-
tion of the overall tumbling time;,,. The function is double-valued.
When an overall tumbling time,, is longer than theM4X | the
longitudinal relaxation rat&; for internal motions on the time scale
of 7, (where ¥’ = 1/t +1/t) is independent a$2. A magnetic
field strength ofoy = 500 MHz is used here.

Table 1. Field strength dependence of/R¥

andtMAX
on (MHz)  RPAX (s71)  MAX (ns)
50.7 3.3 3.0
60.8 2.81 25
76.0 2.54 2.0
101.3 2.38 15

of $2 because the two Lorentzians which appear in
Equation 11 are equal:
Tm T

1+ (@52 1+ (00)2

Therefore, any combination of coefficiens® and
(1 — S?) leaves/ (») of Equation 11 unchanged. This
explains the transition which appears in tt$2,(t.)
contour maps (Figure 2) whet), > 3.0 ns. The field
strength dependence ofRX and<)4¥ is illustrated
in Table 1, wherec,ﬁﬁ'“ can be well approximated by
l/(,l)]\].

For t,, = 8 ns, theR; contour map (Figure 2c)
differs from the 4 ns contour map only in its quanti-
tative details: the ‘rigid body’ contour line is shifted
towards the left side of the ma;Rf =2.09 s'1), with
the criticalt, being only about 1.1 ns, and tWQ value
is significantly smaller than the maximuiy value
(3.13 s'1). The contour map fot,, = 16 ns (Fig-
ure 2d) continues this trend: the ‘rigid body’ contour
is further shifted to the leftg? = 1.13 s°1), with the

(15)
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Table 2. Values of Fi/Rg as a func-
tion of v, for different values of

'[e/'fmal
tn (NS) Te/Tm
0.02 0.2 1.0
2 0.81 0.89 0.94
4 0.83 091 0.99
8 0.87 1.04 1.09
16 1.01 134 1.16

a52 is assumed to be equal to 0.8
and the magnetic field strengthy
=500 MHz.

critical t, being about 0.3 ns. The overall qualitative
patterns of the contour maps f&q at wy = 75 MHz
are very similar, except that the critical becomes
smaller for each,,.

R2 contour maps

Compared to th&1 contour maps, the qualitative pat-
terns of R, contour maps (Figure 4) do not change as
much as a function of,,. This is due to the fact that
R> is dominated by the/(0) term, which increases
monotonically as a function of,. Furthermore, un-
like the situation forR1, J(0) < Jo(0) for all values
of 1., which indicates that the ‘rigid body’ transverse
relaxation rate,Rg, is also the maximunR, value.

In fact, the R, contour maps are approximately un-
changed with respect tg, when thet, is plotted in
reduced units (i.e., as a functiongf/t,,), since

_ 2 2 2
1O =2 [tms Ftl-S )] (16)

and the ‘rigid body'Jo(0) is simply equal ta,,. If we
expresst, in units of t,,and assume; is dominated
by the J(0) term, then Equation 16 can be written in
reduced units:

J(0)/Jo(0) = §* + 11— ) = R/RY,

(17)
wherel = l’fm andm = t,/t,. From Equation 17 it

is apparent thaRleg as a function ofc. /1, (i.e.,\)
is independent of,,,.

Another feature ofR, contour maps is that the
contours are nearly linear. Again assuming tRatis
dominated by/ (0), Equation 16 can be rearranged to

= Corte + C1 (18)

whereC1 = J(0)/Jo(0) andC2 = (C1 — 1)/ Jo(0).
For any given values of,, and Ry, C1 andC3 are
constants, and? andt, are linearly related. Further-
more, sinceC» approaches zero as(0) approaches
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Jo(0), the contour lines tend to become parallel to the The behavior of the allowed model-free parameter

T, axis asRy increases. This implies th&y is much space 62, t,) for varioust, andrt,, regimes

less sensitive to changes ip than it is to $2 when

R approchesR). SinceR; is well approximated by A single relaxation measurement is, of course, not
J(0), the qualitative patterns a?> contour maps do  sufficient to allow interpretation in terms of internal

not change with the field strength. motions. By combining the contour maps correspond-
ing to the different relaxation data, we can achieve a
NOE Contour maps better understanding of the shape of the firs&l ()

In contrast to the previous two cases, the NOE can- solution space and how it is affected by changes,in
not be approximated by a singlgw) term. Although Since the results are very different depending on the
we could adopt the simplification proposed by Far- time scale oft, relative tot,,, we have chosen three
row et al. (Farrow et al., 1995), and approximate the t./t, ratios to represent three qualitatively different
NOE by J(wg)/J (wy), the resulting expression is time scales of the internal motions: @)/ t, = 0.02,
still too cumbersome to predict the behavior of NOE for very fast internal motions; (b¥./w, = 0.2,
contour maps based on an analysis of the spectralfor intermediate time scale internal motions; and (c)
density. Although the more complicated behavior of t./t, = 1.0, for internal motions that are on the
the NOE contours could be avoided by examining the time scale of the overall tumbling time. In addition
dependence of the cross relaxation rate to the ratio of the internal to the overall correlation
time t./1,, the ratio of the longitudinal relaxation to
d2 s , 0 .
Ry = —[6J(wp + oy) — J(og —on)]  (19) its ‘rigid body’ value R /R7 is an important parameter
4 because the structure of ti®g contours is very differ-
on 52 andt,, we do not believe that this is a practi- €nton either side of the critical. In this section, we
cal alternative. Even though the cross-relaxation rate Use both parameters /t,, and R/R? to categorize

could be obtained using the relation the interpretation of the data in different regimes. The
relationship between the two parametergt,, and
Ry = y—N(NOE— DRy, (20) Rl/Rg as a function of tumbling time is presented in
VH Table 2.
the uncertainty inRy would then be a function of the To investigate the effect of changing on the 2,

uncertainties in both the NOE and ttlg measure- T.) Solution space, we synthesized a series of N-H
ments, making our graphical analysis less transparent.relaxation data for each of the macromolecular tum-
Furthermore, our graphical approach assumes that thebling timest,, = 2, 4, 8, and 16 ns, while setting
R1, R, and NOE measurements are independent. If $ to 0.8 andr. /v, to 0.02, 0.2, and 1.0. A uniform
the NOE is converted into cross-relaxation rate this experimental uncertainty of 5% was added to all
will no longer be the case. Also, we feel that it is best the simulated relaxation data. The graphical procedure
to perform analyses on data in a form which is as close for determining the model-free parameters (Jin et al.,
as practical to the raw experimental measurements.1997) was then applied to analyze the simulated data.
The reason for this is particularly apparent here, as any The allowed ranges fa$2 andt, are summarized in
systematic error iR1 will obviously corrupt the NOE Table 3.

data if the latter is recast as a cross-relaxation rate. In-  For very fast internal motions (i.et,/t,, = 0.02)
stead we briefly summarize the general features of the (Figure 6), the §2, t.) solution space is usually well-
NOE contour maps shown in Figure 5. One difference determined i.e., with a small uncertainty in bosh
between NOE contour maps and the contour maps for and t.. We found that whert,, = 2 ns (Figure 6a)
Ry and R is that the NOE contours are not single- the precision of the NOE measurement is particularly
valued functions ofs?. Contour lines with small (or  crucial. Without any NOE data, thes%, t.) solution
negative) NOE values are usually confined within the space is very poorly determined, wish ranging from
lower left region of the map indicating that small NOE 0.15 to 0.83 and, ranging from 0.01 to 3.6 ns. On
values are generally consistent with high internal mo- the other hand, eitheR; or R, (but not both), could
bility on shorttimescalestf < 1 ns). Ast, increases,  be omitted. WhileR; and R, data are equally valu-
the spacing between contour lines with small NOE able in restricting the solution space in Figure 6a, in
values decreases while the spacing between those withsimulations with larger values af,, the Ry data are
large NOE values increases. essential for distinguishing disjoint solution regions
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Figure 4. The transverse relaxatiaRy, contour maps at different values of overall correlation tige () T, = 2 ns,Rq ranging from 0.0 51
to 4.0 s'1 with 0.2 s71 step; (b)t,, = 4 ns, Ry ranging from 0.0 51 to 6.6 571 with 0.2 s step; (c)v, = 8 ns, Ry ranging from 0.0 51
to 11.0 s'1 with 0.5 571 step; (d)t,, = 16 ns, Ry ranging from 0.0 5 to 20.0 s’ with 1.0 s™1 step. A magnetic field strength afy =
500 MHz is used here.

which result from the characteristic behavior of NOE = 80 ps), and a poorly determined region at larger
contours. For example, whet), = 4 ns (Figure 6b), values oft,, that covers a broad range 6% and

the Ry data are crucial, as they distinguish between 1., values. Given thai®; data are available that al-
two disjoint solution regions — a small region cen- low this distinction, increased precision of eitht
tered around 5 = 0.8 andt, = 0.02¢, (i.e., T or R, measurements significantly reduces the area of
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Figure 5. The heteronuclear NOE contour maps at different values of overall correlation fim@) t,, = 2 ns,R4 ranging from—3.6 to 0.4
with 0.1 step; (b),, = 4 ns,R4 ranging from—3.6 to 0.7 with 0.1 step; (¢),, = 8 ns, R1 ranging from—3.6 to 0.7 with 0.1 step; (), =
16 ns,R; ranging from—3.6 to 0.8 with 0.1 step. A magnetic field strengthugf = 500 MHz is used here.

the final solution space. Similar conclusions can be certainty used here. It is interesting that therange
drawn from the simulations carried out with larggy is almost entirely defined by th®; measurements,
values. Whent,, = 8 ns (Figure 6c¢) ott,, = 16 ns while the S? range is almost entirely defined by the
(Figure 6d), theR, data do not contribute to further R, measurements (in the absence of NOE data).
restricting the allowed$?, t.) region determined by For intermediate time scale motions (i-€./t, =

the combination o1 and NOE data with the 5% un-  0.2) (Figure 7), the area covered by the solution space
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Figure 6. The allowed §2, t.) solution space for fast time scale internal motions obtained from simulated relaxationdata & 0.02, see
Table 3): contours oRq, Ry, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas corresponding to the sfowed (
1) solution space are shaded in gray and indicated by an arrow when they are very small=<(# ns: Ry = 2.379+ 0.119 §1, R, =
3.305+ 0.165 51, NOE = 0.358-+ 0.018; (b)), = 4 ns: Ry = 2.494+ 0.125 51, Ry = 5.3844 0.269 s'1, NOE = 0.573+ 0.029; (c)

Tn =8ns:Ry = 1.824+ 0.091 s1, Ry = 9.13+ 0.457 5’1, NOE = 0.439+ 0.022; (d)1,, = 16 ns: Ry = 1.169+ 0.0584 s1, Ry =
16.97+ 0.849 s'1, NOE = 0.0546:+ 0.0027. A magnetic field strength efy = 500 MHz is used here.

increases considerably. The solution space is largestwould be required to further restrict th6% t.) so-

at t,, = 2 ns (Figure 7a), where the relative error in lution space. The situation fay, = 4 ns is somewhat
52 is approximately 40% and the relative errordn less severe (Figure 7b) — t5é range is obtained with
is 550%. Higher precision of th&, measurements an error of~ 20% whilet, is still quite ill-determined.
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Table 3. Graphical analysis of the simulated relaxation data with 5% error for different valugg2of

T (NS) 52 e (NS)
Te/tm =002 /1ty =02 1/t =10 t./tun =0.02 Te/tn = 0.2 Te/tm = 1.0
2 0.75-0.84 0.48-0.81 0-0.92 0.01-0.06 (0.04) 0.20-2.6 (0.&)0.12) (2.0)
4 0.76-0.85 0.68-0.86 0-0.97 0.05-0.14 (0.08) 0.17-1.7 (0.§)0.033 (4.0)
8 0.77-0.84 0.72-0.88 0-0.93 0.11-0.25 (0.16) 0.80-2.3 (1.§)2.3b (8.0)
16 0.78-0.80 0.75-0.85 0-0.95 0.21-0.49(0.32) 2.4-48(3.2» 2.8 (16)

aThe true value fos2 is 0.8, the true values fai, are in par
bDefined within 5,.

Similar to the results for the tumbling time of 2 ns,
improving the precision iR, would be most effective
in reducing the size of thesg, t.) solution space. As
T, increases further (Figure 7c, d), tiRa value ap-
proachesk? (1, = 8 ns) or in fact exceedB? (v,
= 16 ns). As discussed abovi; provides very lit-
tle information abouts? or T, when R ~ R}, thus
it is not surprising that the allowed region is not sig-
nificantly restricted by th&; measurement. While in
this motional regimet,/t,, = 0.2) it is observed that
the R1 data is the least constraining of the three mea-
surements, th&,; and NOE data alone produce two
disjoint allowed regions, an®; data is required to
eliminate this ambiguity. It should be noted that while
R1 and R, alone are generally sufficient to obtain the
maximal precision ins?, the NOE data is crucial in
reducing the size of the allowed region.

For very slow internal motionst{/t,, = 1.0), the
(52, 1,) solution space is quite large with the simulated

5% uncertainties in the relaxation data used here (Fig-

ure 8 and Table 3). This is a general consequence o

the fact that the relaxation contours become sparse

ast, approches or exceeds, (Figure 1). However,
with sufficient improvement in the precision of the

relaxation measurements, it is possible to obtain an

acceptable level of precision i§? and t, even for
motions int, & T, regime. In particular, improved
precision of theR, data is most beneficial, especially
for a more precise determination 4.

We can summarize the above results for analyzing
protein motions which areotin the motional narrow-
ing limit in terms of a few empirical ‘rules’. In general,
precise measurements B and NOE are most useful
for the widest range of internal protein motiorns?(
1,). The uncertainty inS? is mostly related to the
precision in theR, measurement. The uncertainty in
1. is mostly related to the precision in the NOE mea-
surement. These ‘rules’ follow directly from the shape
of the R1, Ry, and NOE contours seen in Figures 2,

entheses, and the magnetic field stremgtk 500 MHz.

4, 5. For cases where the combination of #eand
NOE data results in two disjointSg, t.) regions,Ry
measurement (usually even with a crude precision) are
also required in order to eliminate one of the disjoint
solution regions. In general, these ‘rules’ are useful
throughout the range of the tumbling times we have
considered (X 1, < 16 ns). We repeated the same
analysis at higher field{y = 750 MHz) and we found
that these general ‘rules’ still apply.

Application of the graphical method to experimental
data

We can take advantages of the above ‘rules’ in ex-
perimental work to increase the efficiency of data
collection. In using these methods it is crucial to make
reasonable estimates in the uncertainties of the relax-
ation measurements. FBi andR, measurements this

is best done using Monte Carlo estimates of the un-
certainties in decay-curve fitting, based on duplicate
fmeasurements of some decay points (Palmer Ill et al.,
1991; Mandel et al., 1995), or rms noise measured
in baseline regions of the spectra (Palmer Il et al.,
1991; Mandel et al., 1995). For NOE measurements,
baseline rms noise can be used to estimate uncertain-
ties in peak intensities, and these uncertainties can be
propagated through the calculations of NOEs in the
standard manner (Li and Montelione, 1995).

After completing a set of relaxation measurements
and computing the values and uncertainties of the
relaxation parameters, one can apply this graphical
analysis procedure using a cutoff of one standard
deviation in estimated experimental uncertainties to
estimate the allowedsg, t.) solution space. If the
range ofS2 andt, values is reasonably small the re-
sults can be regarded as final. If the rang&%&nd/or
1. values is large, and if better definition of thg?(

T.) Solution space is desired, one or more measure-
ments need to be repeated with higher precision. By
examining each type of relaxation data using the con-
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Figure 7. The allowed §2, t.) solution space for intermediate time scale internal motions obtained from simulated relaxation data
(te/tm = 0.2, see Table 3): contours &f;, R, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas correspond-
ing to the allowed $2, 1.) solution space are shaded in gray and indicated by an arrow when they are very smg|l.=a) ns: R1 =
2,587+ 0.129 51, Ry = 3.5214+ 0.176 51, NOE = 0.123+ 0.0062; (b)t,,, = 4 ns: Ry = 2.755+ 0.138 1, R, = 5.680+ 0.284 51,

NOE = 0.465+ 0.023; (C)t, = 8 ns: Ry = 2.162+ 0.108 s'1, Ry = 9.58 4+ 0.491 51, NOE = 0.620+ 0.031; (d)t,, = 16 ns:Ry =
1.548+0.0774 51, R, = 17.72+ 0.886 s}, NOE = 0.7264+ 0.036. A magnetic field strength afy = 500 MHz is used here.

tour plots and applying the ‘rules’ mentioned above, parameters for a particular residue. Such an analysis
it is possible to determine which measurements need would be helpful in planning further relaxation experi-
to be made more precisely in order to most efficiently ments when the precision in the model-free parameters
improve the precision in the estimate of the motional could be improved by a judicious choice of additional
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Figure 8. The allowed (92, 1.) solution space for slow time scale internal motions obtained from simulated relaxationgata & 1.0, see
Table I11). Contours ofR1, R2, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas corresponding to the Sflowed (
1¢) Solution space are shaded in gray and indicated by an arrow when they are very small<& ns: R = 2.760+ 0.138 s1, Ry =
3.755+ 0.188 §'1, NOE = 0.299+ 0.015; (b)t,, = 4 ns: Ry = 2.994+ 0.150 s1, R, = 6.114+ 0.306 s, NOE = 0.662+ 0.033; (c)

Tm =8 NsiRy =2.2734+ 0.114 1, Ry, = 10.30+ 0.515 s 1, NOE = 0.775+ 0.039; (d)t,, = 16 ns: Ry = 1.344+ 0.0672 51, Ry =
18.974 0.95 s, NOE = 0.809+ 0.040. A magnetic field strength afy = 500 MHz is used here.

relaxation measurements; this analysis will be espe- certain key residues whose dynamics are of particular
cially useful when the number of residues with large interest.
(52, 1.) solution spaces is small, or when there are  We use thé®N relaxation data of Ashand TyP8

of hTGFu discussed previously (Li and Montelione,



1995; Jin et al., 1997) as examples. T, () solu-
tion space of Ashis quite large 52 varies between
0.56 and 0.85 while, varies between 0.1 and 2.3 ns
(Figure 9a). The originaR; relaxation measurement
for Asr® (2.61+0.71 s71) has a relative error of more
than 25%, which is much greater than that of fyere-
laxation measurement &3+ 0.58 s°1) (about 10%).
Naively, one might think that in this situation an im-
provementin the precision & relaxation data would

be most useful. However, the simulated results pre-
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cision (< 5%) in order to obtain a good estimate
of the model-free parameters while a less predise
measurement is generally sufficient. This proposal is
based on the assumption that the chemical exchange
contribution toR» can be determined precisely.

Internal motions on timescales close to or slower
than the overall tumbling time

In their original paper (Lipari and Szabo, 1982), Li-

sented in Figure 9b show that even a fourfold increase pari and Szabo derived the model-free expression for

in the precision of theR; measurement offers very
little improvement in the determination of the allowed
(52, t,) space. If instead we improve the precision of
the R, measurement by a factor of 2, we obtain a sig-
nificant improvement of the range 6# (Figure 9c):
52 then varies between 0.71 and 0.85.

The allowed 62, t.) solution space of Ty is
so large that little useful information about the mo-
tion can be extracted (Figure 10a). This portion of the
hTGFax molecule is within the receptor-binding epi-
tope (Li and Montelione, 1995), and is critical to its
biological function. According to the ‘rules’ described

the spectral density function (Equation 11). It should
be recognized that Equation 11 makes no assump-
tions about the relative magnitudes of and t,,;

the only assumptions are that the overall and internal
motions are uncoupled and the correlation functions
corresponding to these motions decay as single expo-
nentials. Despite popular misconceptions, under these
assumptions, Equation 11 is also valid wher> t,,.
However, as, gets much larger that),, the spectral
density functions (Equation 11) go to their ‘rigid body’
limits, and the relaxation data are insentitive to internal
motions much slower than the overall tumbling. They

above, since the NOE measurement is already verythen introduced additional simplifications: (a) if the
precise (less than 2% error) and is most restricting overall motion is considerably slower than the internal
(Figure 10a), additional measurements should focus motions . <« 1), Equation 11 becomes

on improving theR; and/or R, measurement(s). A
moderate increase in the precision of temeasure-
mentresults in little improvementin the solution space
(Figure 10b), while a larger increase in precision of the
R, measurement results in two disjoint allowesf (

T.) regions (Figure 10c). In this situation, a moder-
ate increase in the precision of tt®2 measurement
eliminates one of the two disjoins¢, t.) regions and
provides a significant improvement in the precision
of the allowed §2, t.) space (Figure 10d). It is in-
teresting to note that in this case improving tRe
measurement would be sufficient to greatly improve

the precision of the estimates of motional parameters.

Based on our experience of applying the graphi-

(1- 5%,
1+ (070)?

()= 2 [
@ _5[1+(mm)2

} . (2

(b) if T, is in the extreme narrowing limit(et.)? <«

1, wherew is the largest frequency at which the spec-
tral density must be evaluated) Equation 21 can be
further simplified to

Sztm
1+ (wTm)?

Furthermore Lipari and Szabo showed that Equa-
tion 22 is exact for the more general situation when
C;(t) is expressed as a linear combination of an

J(w) = é [ +(1- SZ)‘C{| . (22

cal analysis to many relaxation data sets available in /Pitrary number of exponential decays

the literature (Kordel et al., 1992; Li and Montelione,
1995; Yamasaki et al., 1995; Mandel et al., 1996;
Stivers et al., 1996; Epstein et al., 1995; Williams
et al., 1996; Liu et al., 1996; Cai et al., 1996; Zhou

etal., 1996; Hodsdon and Cistola, 1997; Farrow et al.,

Cr(t) = S% + Zaieft/r", (23)
i=1

if (1) the overall motion is isotropic, (2) internal mo-

tions are much faster than the overall tumbling (i.e.

1997; Papavoine et al., 1997), we suggest that giventhe internal motions are in the extreme narrowing

the restriction of working at a single magnetic field
strength, all threeK;, R, and NOE) relaxation pa-

rameters should be measured for each site, and that
the R, and NOE measurements must have high pre-

limit), and (3) t. is defined to be the area under the
correlation function, i.e.

t.(1— 5% = / oo(c, (t) — S?)dr. (24)
0
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Figure 9. The allowed §2, t,) space obtained from the experimental relaxation data of residu® @snTGFx with improved relaxation
measurement(, = 3.76 ns). Contours aRk1, Rp, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas corresponding
to the allowed §2, t.) solution space are shaded in gray and indicated by an arrow when they are very small. (a) Original relaxation data (Li
and Montelione, 1995)R, = 2.61+ 0.71 st Ry, =5.53+ 0.58 sl NOE = 0.44+ 0.03; (b) fourfold increase in th&, precision; (c)

twofold increase in th&, precision.

Equation 23 also applies in situations in which some decay for the internal correlation function, it could still
T; > T, provided that the order parameter is redefined be applied without error to interpret multi-exponential
to exclude the averaging due to those motions. decay provided that the internal motions are either
Lipari and Szabo showed that although Equa- much slower or much faster than the overall tumbling.
tion 11 was constructed assuming single exponential When the internal motions are close to the tumbling
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Figure 10. Allowed (52, t.) space obtained from the experimental relaxation data of resid® TfrhTGFx with improved relaxation
measurement(, = 3.76 ns). Contours aRk1, Rp, and NOE are plotted in thick, dashed, and thin lines, respectively. The areas corresponding
to the allowed §2, t.) solution space are shaded in gray and indicated by an arrow when they are very small. (a) Original relaxation data (Li
and Montelione, 1995)R; = 2.83+ 0.23 51, R, = 5.85+ 0.59 51, NOE = 0.63+ 0.01; (b) twofold increase in th&, precision; (c)

fourfold increase in the&, precision; (d) twofold increase in the; precision.

time the situation is more complex. This conclusion nal motions decay on a time scale approaching that
appears to have led to the assumption by some workersof the overall motions. However, this assumption is
that the model-free formalism is not applicable at all incorrect. As long as the overall and internal motions
when the correlation function(s) describing the inter- are separable and the correlation function describing
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Figure 11. Allowed (52, <) solution space obtained from relaxation data with multiple time scale internal motjpns ¢ ns and the relative
error = 2%). Relaxation data are simulated using the following inputs: the areas corresponding to the aﬂ%,vve),d golution space are
shaded in gray and indicated by an arrow when they are very small. ContoRis Bp, and NOE are plotted in thick, dashed, and thin lines,
respectively. (a) The extended Lipari-Szabo model (multiple time scale motipry, 10 ps,ts = 2 ns,S]% =0.9, sz =09, wyg =500 MHz,

(b) the simple Lipari-Szabo model (single time scale motiap)= 10 ps, $ = 0.81, vy = 500 MHz, (c) the simple Lipari-Szabo model
= 0.81, oy = 500 MHz, (d) the extended Lipari-Szabo model (multiple time scale motion),

(single time scale motion), = 2 ns, g
1 =10ps,ty =2 ns,S% =09,52=09,0y =1GHz.

the internal motion decays as a single exponential, motional parameters even though the internal motion
Equation 11 is exact and may be applied to extract the and overall tumbling time scales are commensurate.
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Even when the internal motions cannot strictly be de- timescales which are at least one order of magni-
scribed by a single exponential, the effective order tude apart. The spectral density functidétw) in the
parameter extracted using Equation 11 can sometimesextended model-free formalism is given by

provide information about internal motions on the

same time scale as the overall motion. One example
corresponds to the use of the extended Lipari-Szabo

equation (Clore et al., 1990b) to describe two internal
motions, one in the extreme narrowing limit and the
other close to the overall motion. For this situation
the internal correlation function effectively decays as
a single exponential so Equation 11 is again valid.
Lipari and Szabo actually considered the problem of
detecting internal motions which are slow on the NMR
time scale (wt.)2 > 1) as well. They estimated in a
gualitative way that order parameters larger tha. 3
could be detected with a precision-f30%. A quan-
titative examination of this problem requires the kind
of analysis reported in this paper. Apart from an exam-
ination of the validity of the approximations inherent
in the model-free formalism, we can see from the re-

(11— 5%ty
1+ (wtf)?
(87 = 591,

+ 1+ (w1y)? :| ’

What happens when simulated NMR relaxation
data is generated using the extended model-free for-
malism (Equation 25) and interpreted using the single
exponential approximation (Equation 11)? To explore
this question, we simulated relaxation data that cor-
responds to motion on two time scales (a fast motion
(ty =10ps) withs2 = 0.9 and a much slower motion
(ts = 2 ns) with§? = 0.9) using Equation 25t =
4 ns andwy = 500 MHz). A very small experimen-
tal uncertainty (2%) was assumed. We then analyzed
the data using the original Lipari-Szabo formalism.

J(0) = 2 Sztm
= 5 1+ ((’JTm)2

(25)

sults of the previous sections (Figures 6—8), that when Surprising|y, there is a well defined‘% te) solution

the internal motion is no longer in the extreme nar-
rowing limit, however, very high precision relaxation

space centered afS= 0.85 andr, 50 ps (Fig-
ure 11a). These solutions are similar to what would

measurements are required in order to extract any use-have been obtained from relaxation data generated us-

ful information about either the magnitude or the time
scale of these slower motions.

Multiple timescale internal motions uncovered by
ultra-high field NMR relaxation experiments

ing the simple Lipari-Szabo model with a single fast
internal motion (8 = 0.81, t. = 10 ps; Figure 11b),
but very different from what would have been obtained
from relaxation data generated with only slow internal
motion ($ = 0.81, t, = 2 ns; Figure 11c). Thus, even
very high precision relaxation measurements at 500

This paper has been concerned with the effect of finite MHz are sometimes insufficient to detect motions on
precision in the experimental NMR relaxation data on two time scales. We then repeated this procedure us-
the estimation of the magnitude and time scale of the ing the same motional parameters with relaxation data
protein internal motion in cases where the internal mo- simulated at ultra-high field (1 GHz). In these simula-
tion is predominantly occurring on one time scale. The tions, the results were more encouraging (Figure 11d)
effects of finite precision in the measurements on the — no (52, t.) solutions exist that are consistent with
detection of multiple time scale internal motions, an the single exponential approximation (Equation 11).
issue related to the simultaneous analysis of relaxation This implies that higher field spectrometers can be
data recorded at multiple field strengths, will be the very useful in helping to detect motions on multiple
subject of a separate communication. However, we time scales which appear as deviations from the sim-
briefly consider here the advantage of relaxation ex- ple Lipari-Szabo model. A systematic investigation of
periments performed at a single ultra-high field for the use of multiple field experiments to probe multi-
the detection of two internal motions, one of which ple time scale motions will be the subject of a future
is on the picosecond time scale and the other on the communication. It will be desirable to use higher field
nanosecond time scale. spectrometers in the future to reduce the ambiguity

In the original Lipari-Szabo model, only one ef- of the information about internal dynamics of bio-
fective correlation time for internal motion is used. molecules that could be extracted from the relaxation
Clore et al. (Clore et al., 1990b) proposed an ex- measurements.

tension of the Lipari-Szabo model which includes a
second correlation time in order to deal with situa-
tions where internal motions occur on two distinct

The fact that a well-defined solution space exists
assuming that the motion is occurring on only one
time scale when the data was generated from a model
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with motion on two distinct time scales in Figure 11a Unfortunately, the classical statistical methodol-
suggests that the model-selection problem may be farogy used by Mandel et al. (Mandel et al., 1995) and
more insidious than has been previously appreciated. Yamasaki et al. (Yamasaki et al., 1995) does not pro-
As is well-known, the ‘model-free’ formalism as ap- vide the theoretical machinery needed to adequately
plied in the NMR literature actually consists of a set of deal with model uncertainty. Bayesian statistical meth-
nested models which make use of the parameft&rs  ods, on the other hand, are far better equipped to assess
1., Rer (@ phenomenological exchange contributionto the weight of evidence in favor of a model given a set
R2), and S?. Various statistical model-selection pro- of data, and allow for model uncertainty (Bretthorst,
cedures, such as significance testing (e.g. Nicholson1990b; Kass and Raftery, 1995). In particular, one
et al., 1995) and a combination of significance and may calculate the marginal likelihood of the data given
hypothesis testing (e.g. Mandel et al., 1995; Yamasaki modelM;, which is defined to be
et al., 1995), have been used to determine which sub-
set of the above parameters is needed to adequately P (DIM;) = / P(D|©;)P(©,)dO;, (26)
describe the relaxation data for a given residue.
These statistical procedures in general do not pro-
vide a measure of the amount of evidence in favor of
a given model, but rather can only ‘accept’ or ‘reject’ . . . :
a given model. This is problematic, as Figure 11 sug- interpreted as t.he weight of evidence in favor of model
gests that in fact there may not be enough information M;, and the ratio
in the three noise-corrupted data points to decisively ~_ P(DIM;) @7
accept one model in favor of another. The best pro- Yo P(Dle)’

cedure in such a situation would be to resign oneself | ,own as the ‘Bayes factor’, is an estimate of the rel-
to the fact that the choice of model is itself uncertain, 4ve odds in favor ofV; vs. M; (Bretthorst, 1990b;

and that inferences concerning the parameter valueskss and Raftery, 1995). Development of a practical
should take into account that uncertainty. Of course, gayesian model selection strategy for the the analysis
one could invoke some form of Occam’s Razor, and qf yejaxation data which incorporates uncertainty in
choose to consider only the model with the smallest 1, is currently underway in our laboratories.
number of parameters which adequately fits the data.
However, this provides no guidance in cases where the
number of parameters is equal (e.67,(t., Rer) Vs. Conclusions and future directions
(82, te, 5%)). More seriously, the arbitrary selection
of one model based upon ambiguous data could resultThe graphical procedure used for the analysis of relax-
in misleading estimates of the parameter values if the ation data allows one to directly visualize the impact
‘best-fit' parameters under the competing models are of experimental uncertainties on the precision of es-
significantly different. timated model-free parameters. Although the relation-
The situation is further complicated by the fact ship between the precision of relaxation measurements
that the model-selection methods used by Mandel et and the precision ofSg, t.) parameters is far from
al. (Mandel et al.,, 1995) and Yamasaki et al. (Ya- being simple due to its dependence gn t., and
masaki et aI., 1995) implicitly assume that the overall R]_/RO, nevertheless we find that, in generaL in order
correlation timer,, is known precisely. In fact, Korzh- o obtain a good estimate of the motional parameters,
nev et al. (Korzhnev et al., 1997) have recently shown one may want to strive for the highest precision in
that if the bulk of the residuesin a protein exhibit slow the R, and NOE measurements at the expense of a
time scale motion, then the traditional method will fair precision in theR1 measurement. The W|de|y em-
mis-estimater,, and will result in an incorrect inter-  ployed assumption that the effective correlation time
pretation of the relaxation data. Furthermore, itis well ¢, s required to be significantly faster than the over-
known that even small changes in the assumed valuea|| tumbling timet,, in the context of the model-free
of t,, can change which model is selected for a given formalism is not a prior condition for the applicability
residue (Li and Montelione, 1995). Thus, uncertainty of the model-free formalism, but a consequence of the
in the estimate ot,, leads directly to an uncertainty in  |imited precision in the NMR relaxation data.
the model selection. Analysis of relaxation data simulated using multi-
ple time scale internal motions indicates that at typical

where ®; is the vector of parameters under théh
model, P(D|©®;) is the likelihood of the data, and
P(©;) is the prior probability of®;. P(D|M;) can be



491

field strengths (i.e., 500 MHz) even very high preci- tional Institutes of Health GM-30580 to R.M.L. and
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